В чем разница между трансформатором и автотрансформатором? Автотрансформатор — устройство, экономичность принципы работы и регулирования Автотрансформаторы особенности конструкции принцип действия характеристики

По сравнению с обычными трансформаторами, автотрансформаторы имеют ряд преимуществ. Среди преимуществ можно выделить то, что КПД автотрансформаторов намного выше, чем у обычных трансформаторов, количество витков, размеры и вес магнитопровода меньше, что значительно экономит материал и соответственно цену автотрансформаторов . Недостатком является то, что устройство, использующее автотрансформатор соединено с электрической сетью, то есть ни одну из точек схемы такого устройства нельзя заземлить. Это может привести к короткому замыканию или к выходу из строя устройства.
В автотрансформаторах существует электрическая связь помимо магнитной. Таким образом, расчетная мощность представляет собой часть проходной. В обычных же трансформаторах вся проходная мощность является расчетной (зависит от габаритов и веса трансформатора) из-за существования исключительно магнитной связи. Целесообразнее всего использовать автотрансформаторы с коэффициентом трансформации, имеющим значение меньше 2. В случае, если коэффициент имеет значение большее, у автотрансформаторов появляются некоторые недостатки.
В наше время, в бытовой технике и автоматических устройствах широко применяются автотрансформаторы со значением мощности до 1кВА. Автотрансформаторы с большей мощностью применяют обычно в устройствах с мощными двигателями переменного тока - так называемые силовые автотрансформаторы . Их мощность достигает значения нескольких сотен МВА.

49 )как передается в автотрансф-ре мощность из первичной сети во вторичную?

При этом передача мощности из первичной сети во вторичную сеть происходит, помимо магнитной связи, еще и за счет электричества.

51 )Почему косинус в режиме х.х значительно меньше чем в номинальном режиме? Объясните зависимость cosf=f(U1)

52 )В чем заключается опасность аварийного к.з автотрансформатора(по сравнению с трансф-ром)?

Ток КЗ вкл…. В U`/U 2 =1/1-n раз превышает ток кз обычного тр-ра

53) Как при увеличении тока во вторичной обмотке изменится поток взаимоиндукции, поток рассеяния, индуктированные эдс?

I 2 и Ф – Ф – неизменный … создает магнитный поток рассевания, неизменно Ф 2 , он сцепляется с винтами собственной обмотки, индуктирует в них ЭДС рассеивания

54) Что такое группа соединения транс-ра? Как ее можно определить по векторной диаграмме?

Для включения трансф-ра на параллельную работу с другими трансф-ми имеет значение сдвиг фаз между эдс первичной и вторичной обмоток. Для характеристики этого сдвига вводится понятие о группе соединений обмоток.Группа соединения обмоток трансформатора определяется углом сдвига между векторами одноименных линейных ЭДС (например, EAB и Eab или EBA и Eba) обмоток высшего и низшего напряжений.

55) Какие схемы и группы соединений трансф-ров являются стандартными?

Звезда, треугольник и зигзаг- схемы соединения

Группы- 0,11

Согласно ГОСТу для однофазных трансформаторов установлена одна стандартная группа соединений - 0.

У трехфазных трансформаторов возможны все двенадцать различных групп соединений, но желательно иметь минимальное число различных групп, поэтому для трехфазных трансформаторов установлены только две стандартные группы: 11 и 0.

Группе 11 соответствуют два способа соединения: звезда/треугольник (Y/D) и звезда с выведенной нейтральной точкой/треугольник (Y/D).

Группе 0 соответствует один способ соединения: звезда/звезда с выведенной нейтральной точкой (Y/Y). Специальный знак (Y) во втором и в третьем случаях показывает, что при данном соединении обмоток нейтральная точка имеет вывод. В числителе обозначения всегда указывается способ соединения обмотки высшего напряжения.

Группа 0- Y/Y применяется для трансформаторов с высшим напряжением до 35 кВ включительно при низшем напряжении 230 В и мощности до 560 кВ А или при том же пределе высшего напряжения с низшим напряжением 400 В и мощностью до 1800 кВ А. Оба способа соединения по группе 11 предназначены для более мощных трансформаторов и более высоких напряжений.

В качестве примера на рис. 108 показано, как при соединении Y/D вектор низшего (вторичного) линейного напряжения U аб образует с вектором высшего (первичного) линейного напряжения U AB угол 330°, который равен углу между стрелками в 11 ч; следовательно, этот способ соединения должен быть отнесен к группе 11.

56 )Изобразите схему замещения трансформатора при нагрузке, поясните параметры и объясните количественные соотношения параметров?

Z н =(w 1 /w 2) 2 (r н +-jx н)- сопротивление нагрузки

Автотрансформатор отличается от трансформатора тем, что у него обмотка низшего напряжения является частью обмотки высшего напряжения, причем она выполняется из проводников, в общем случае отличающихся по сечению от проводников другой части, и обычно располагается относительно другой части, как показано на рисунке 6.4. Следовательно, части Аа и аХ можно рассматривать как обмотки двухобмоточного трансформатора, имеющие между собой не только магнитную связь, но и электрическую.

Автотрансформаторы могут служить как для понижения, так и для повышения напряжения. Они выполняются для небольших коэффициентов трансформации, не сильно отличающихся от единицы, и экономичнее в работе и требуют на изготовление меньше материалов, чем обычные двухобмоточные трансформаторы на ту же номинальную мощность.

Автотрансформаторы тем экономичнее по сравнению с двухобмоточными трансформаторами, чем ближе ω2 к ω1, т. е. чем ближе коэффициент трансформации к единице. Так как веса обмотки и стали сердечника автотрансформатора меньше весов тех же материалов двухобмоточного трансформатора, то и потери в нем меньше, а к. п. д. выше при той же мощности

Недостатком автотрансформатора является то, что здесь вторичная цепь оказывается электрически соединенной с первичной цепью. Она должна иметь такую же изоляцию по отношению к земле, как и первичная цепь. Это обстоятельство заставляет выбирать значение коэффициента трансформации автотрансформатора при высоких напряжениях не выше 2-2,5.

Автотрансформаторы бывают однофазные и трехфазные. Однофазный автотрансформатор (рисунок 10) представляет собой однообмоточный трансформатор с числом витков , вторичной обмоткой которого является часть первичной обмотки, т. е. . Обмотка трансформатора размещается на замкнутом сердечнике из электротехнической стали.

Рисунок 10-Схема однофазного автотрансформатора

Принцип действия авто­трансформатора состоит в следующем: при подключении обмотки в сеть переменного тока напряжением U1, в ней создается переменное магнитное поле, которое возбуждает во всей обмотке ЭДС Е1, а в части обмотки с числом витков w2 - ЭДС Е2. Величина Е2 зависит от числа витков и выражается формулой:

где е - ЭДС индукции в одном витке.

Е1, и Е2 по правилу Ленца имеют знаки, противоположные напряжению U1, а следовательно, и ток 12, созданный Е2, будет иметь направление, противоположное I1. Таким образом, в части обмотки ВС ( 2) будет проходить ток I2-I1, а в части AC () - ток I2. Это приводит к уменьшению тепловых потерь в обмотках автотрансформатора по сравнению с двухобмоточным трансформатором и к увеличению КПД. Витки обмотки можно сделать из провода меньшего сечения, что дает экономию меди и других материалов, уменьшает габариты автотрансформатора.

Для плавного изменения снимаемого напряжения применяют автотрансформаторы со скользящим контактом (контакт С на рисунке 10). Подобные трансформаторы нашли широкое применение в лабораторной практике и называются лабораторными автотрансформаторами (ЛАТР).

Автотрансформаторы находят себе применение в качестве пусковых для пуска больших синхронных двигателей и короткозамкнутых асинхронных двигателей, для осветительных установок (для дуговых ламп переменного тока), для связи сетей с напряжениями, мало отличающимися одно от другого.

Автотрансформаторы выполняются также с устройством, позволяющим плавно регулировать их вторичное напряжение. Регулирование напряжения осуществляется путем изменения числа витков обмотки при помощи специальных переключателей или контакта, перемещаемого непосредственно по обмотке, очищенной с одной стороны от изоляции.

Автотрансформатор - это такой вид трансформатора, в котором помимо магнитной связи между обмотками имеется еще и электрическая связь. Обмотки обычного трансформатора можно включить по схеме автотрансформатора, для чего выход X обмотки w ax соединяют с выводом а обмотки w ax (рис. 3.2). Если выводы Ах ах подключить нагрузку Z H , то получим понижающий автотрансформатор. Если же выводы ах подключить к сети, а к выводам Ах подключить нагрузку Z H , то получим повышающий автотрансформатор.

Рис. 3.2. Электромагнитная (а) и принципиальная (б) схемы однофазного понижающего автотрансформатора

Рассмотрим подробнее работу понижающего автотрансформатора. Обмотка w ax одновременно является частью первичной обмотки и вторичной обмоткой. В этой обмотке проходит ток I 12 . Для точки а запишем уравнение токов:

т. е. по виткам wax проходит ток I 12 , равный разности вторичного I 2 и первичного I 1 токов. Если коэффициент трансформации автотрансформатора k A = w Ax /w ax ,. немногим больше единицы, то токи I 1 и I 2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить витки w ax проводом уменьшенного сечения. Введем понятие проходной мощности автотрансформатора, представляющей собой всю передаваемую мощность S пр =U 2 I 2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность S p асч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. В автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора S пр = U 2 I 2 на составляющие. Воспользуемся для этого выражением (3.5). Подставив это выражение в формулу проходной мощности, получим

S пр =U 2 I 2 =U 2 (I 1+ I 12) =U 2 I 1 +U 2 I 12 =S э +S расч. (3.7)

Здесь S э = U 2 I 1 , - мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе S расч = = U 2 I 12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магнитопровод меньшего сечения, чем в трансформаторе равной мощности.


Средняя длина витка обмотки также становится меньше; следовательно, умень­шается расход меди на выполнение обмотки автотрансформатора. Одновременно умень­шаются магнитные и электрические потери, а КПД автотрансформатора повышается.

Таким образом автотрансформатор по сравнению с трансформатором равной мощ­ности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротехническая сталь), более высоким КПД, меньшими размерами и стои­мостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S 3 , а следовательно, чем меньше расчетная часть проходной мощности.

Мощность S Э передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

S э = U 2 I 1 =U 2 I 2 /k A =S пр /k A , (3.8)

т.е. значение мощности S Э обратно пропорционально коэффициенту трансформации автотрансформатора k A .

Рис. 3.3. Зависимость S Э /S ПР от коэффициента трансформации автотрансформатора

Из графика (рис. 3.3) видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при k A = 1 вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (S Э /S ПР = 1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации k A < 2. При большом значении коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

1. Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и х(см. рис. 3.2, а) напряжение U 1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з. (см. § 4.1), поэтому токи к.з. ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

2. Электрическая связь стороны ВН со стороной НН; это требуетусиленной электрической изоляции всей обмотки.

3.При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

4. В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для понижения напряжения сетей ВН до значений НН, подводимого непосредственно к потребителям.

Рис. 3.4. Трехфазный автотрансформатор

Силовые автотрансформаторы широко применяют в линиях передачи и распределения электроэнергии для связи сетей смежных напряжений, например ПО и 220, 220/и 500-кВ и др. Такие автотрансформаторы обычно выполняют на большие мощности (до 500 МВ-А и выше). Обмотки трехфазных автотрансформаторов обычно соединяют в звезду (рис. 3.4).

Автотрансформаторы применяют в электроприводе переменного тока для уменьшения пусковых токов двигателей значительной мощности (см. § 15.2), а также для регулировки режимов работы злектрометаллургических печей. Автотрансформаторы малой мощности применяют в устройствах радио, связи и автоматики.

Рис. 3.5. Регулировочный одно­фазный автотрансформатор:

1 - ручка для перемещения кон­тактной щетки; 2 - щеткодержа­тель; 3 - обмотка

Широко распространены автотрансформаторы с переменным коэффициентом трансформации. В этом случае автотрансформатор снабжают устройством, позволяющим регулировать величину вторичного напряжения путем изменения числа витков w ах (См. рис. 3.2). Осуществляется это либо переключателем, либо с помощью скользящего контакта (щетки), перемещаемого непо­средственно по зачищенным от изоляции витками обмотки. Такие автотрансформаторы, называемые регуляторами напряжения, могут быть однофазными (рис. 3.5) и трехфазными.

Контрольные вопросы

1. Каковы достоинства трехобмоточных трансформаторов?

2. Перечислите достоинства и недостатки автотрансформаторов.

3. Зависят ли достоинства автотрансформатора от коэффициента трансформации? Объясните, почему.

4. Объясните устройство автотрансформатора с переменным коэффициентом

трансформации.

Его достоинства и недостатки

Основное конструктивное отличие автотрансформатора от трансформатора состоит в том, что в автотрансформаторе часть обмотки ВН является обмоткой НН. В связи с этим энергия из первичнойцепи во вторичную передается не только за счет магнитной связи между этими цепями, но и за счет непосредственной электрической связи этих цепей. Рассмотрим работу однофазного понижающего автотрансформатора (рис. 3.2, а).

Участок обмотки аХ--общий для первичной и вторичной цепей. Пренебрегая током х. х., запишем уравнение МДС:

I1 w AX + w aX I2=0.

Разделив это уравнение на число витков обмотки w AX , получим уравнение токов автотрансформатора:

I 1 + I 2 (w aX / w AX)=0, или I 1 = - I 2 / k A , (3.5)

где k A = w AX /w aX -- коэффициент трансформации автотрансформатора.-

По общей части витков аХ обмотки автотрансформатора проходит ток I12, равный алгебраической сумме токов, т. е.

I 12 = I 1 + I 2 . (3.6)

В понижающем автотрансформаторе вторичный ток больше первичного, т. е. I2>I1. Из этого следует, что в этом трансформаторе ток I12 в общей части витков аХ равен разности вторичного и первичного токов:

I12 =I 2 -I1. (3.7)

Если коэффициент трансформации автотрансформатора немногим больше единицы, то токи I1 и I2 мало отличаются друг от друга, а их разность составляет небольшую величину. Это позволяет выполнить часть аХ обмотки автотрансформатора из провода меньшего сечения.

Введем понятие проходной мощности автотрансформатора, пред- ставляющей собой всю передаваемую мощность Sпp=U2I2 из первичной цепи во вторичную. Кроме того, различают еще расчетную мощность Sрасч, представляющую собой мощность, передаваемую из первичной во вторичную цепь магнитным полем. Расчетной эту мощность называют потому, что размеры и вес трансформатора зависят от величины этой мощности. В трансформаторе вся проходная мощность является расчетной, так как между обмотками трансформатора существует лишь магнитная связь. Но в автотрансформаторе между первичной и вторичной цепями помимо магнитной связи существует еще и электрическая. Поэтому расчетная мощность составляет лишь часть проходной мощности, другая ее часть передается между цепями без участия магнитного поля. В подтверждение этого разложим проходную мощность автотрансформатора Sпр=I2U2 на составляющие. Воспользуемся для этого выражением (3.7), из которого следует, что I 2 =I1+I 12 . Подставив это выражение в формулу проходной мощности, получим

S np =U2I2=U 2 (I 1 +I 12)=U 2 I 1 +U 2 I 12 =S э + S расч. " (3.8)

Здесь S э --U 2 I1 -- мощность, передаваемая из первичной цепи автотрансформатора во вторичную благодаря электрической связи между этими цепями.

Таким образом, расчетная мощность в автотрансформаторе S рас = U 2 I12 составляет лишь часть проходной. Это дает возможность для изготовления автотрансформатора использовать магни-топровод меньшего сечения, чем в трансформаторе равной мощности.

Средняя длина витка_обмотки также становится меньше; следовательно, уменьшается расход меди на выполнение" обмотки авто-трансформйтораГ Одновременно уменьшаются магнитные и электрические потери, а КПД автотрансформатора повышается^

Таким образом, автотрансформатор по сравнению с трансформатором равной мощности обладает следующими преимуществами: меньшим расходом активных материалов (медь и электротёх"ничё-ская сталь), более высоким КПД, меньшими размерами и стоимостью. У автотрансформаторов большой мощности КПД достигает 99,7%.

Указанные преимущества автотрансформатора тем значительнее, чем больше мощность S Э, а следовательно, чем меньше расчетная часть проходной мощности.

Мощность S Э, передаваемая из первичной во вторичную цепь благодаря электрической связи между этими цепями, определяется выражением

Sэ = U2I1 = U2I2/kA = S пр /k A , (3.9)

т. е. величина мощности S э обратно пропорциональна коэффициенту трансформации автотрансформатора k A .

Из графика, изображенного на рис. 3.3, видно, что применение автотрансформатора дает заметные преимущества по сравнению с двухобмоточным трансформатором лишь при небольших значениях коэффициента трансформации. Например, при k A = вся мощность автотрансформатора передается во вторичную цепь за счет электрической связи между цепями (S э /Sпр=1).

Наиболее целесообразно применение автотрансформаторов с коэффициентом трансформации k A 2. При большой величине коэффициента трансформации преобладающее значение имеют недостатки автотрансформатора, состоящие в следующем:

Большие токи к.з. в случаях понижающего автотрансформатора: при замыкании точек а и X (см. рис. 3.2, а) напряжение U1 подводится лишь к небольшой части витков Аа, которые обладают очень малым сопротивлением к.з. В этом случае автотрансформаторы не могут защитить сами себя от разрушающего действия токов к.з., поэтому токи к.з. должны ограничиваться сопротивлением других элементов электрической установки, включаемых в цепь автотрансформатора.

Электрическая связь стороны ВН со стороной НН; это требует усиленной электрической изоляции всей обмотки.

При использовании автотрансформаторов в схемах понижения напряжения между проводами сети НН и землей возникает напряжение, приблизительно равное напряжению между проводом и землей на стороне ВН.

В целях обеспечения электробезопасности обслуживающего персонала нельзя применять автотрансформаторы для питания цепей НН от сети ВН.

Автотрансформатор является одним из вариантов трансформатора, имеющего первичную и вторичную обмотки, подсоединенные напрямую.

Благодаря такой особенности устройство обладает не только магнитной, но и электрической связью.

Устройство и принцип действия автотрансформаторов рассмотрим в статье.

Что такое автотрансформатор?

С общей точки зрения трансформаторы - приборы, предназначенные для преобразования показателей тока входного типа с одного напряжения на выходные токи другого напряжения. Если необходимо произвести замену уровня напряжения в незначительных пределах, то самым оптимальным вариантом станет применение однообмоточного прибора, также известного под названием автотрансформатор.

При коэффициенте трансформации на уровне единицы осуществляется полное поступление энергии непосредственно к заключительному потребителю.

Регулирование обеспечивается секционированной обмоткой внутри автотрансформатора, а сам прибор характеризуется удобством и ремонтопригодностью.

Автотрансформаторы обладают достаточно простой и интуитивно понятной конструкцией, что совершенно не умаляет достоинств такого прибора, но несколько ограничивает сферу применения.

Отличие автотрансформатора от трансформатора

Классические трансформаторы обладают не связанными друг с другом первичными и вторичными обмотками, поэтому процесс передачи энергии в таких устройствах обусловлен наличием магнитного поля.

На объединенной обмотке автотрансформатора располагается три вывода или более, при подключении к которым есть возможность получить различные показатели уровня напряжения.

В условиях малых коэффициентов трансформации, в пределах одной-двух единиц, любые автотрансформаторы показывают более высокую эффективность по сравнению с трансформаторными устройствами. Кроме всего прочего, такие приборы более легкие по весу и доступнее по стоимости, чем традиционные трансформаторы многообмоточного типа.

Устройство автотрансформатора

Однако, сравнивая основные характеристики автотрансформатора и классического трансформатора, можно смело утверждать, что второй вариант является максимально универсальным, а также отличается более широким диапазоном работы в процессе эксплуатации.

Автотрансформаторы характеризуются фактическим наличием одной обмотки с отходящими выводами, что обеспечивает высокоэффективную электромагнитную и электрическую связь.

Преимущества и недостатки

Основные преимущества автотрансформаторов закономерно снижаются в условиях повышения трансформирующего коэффициента, и именно по этой причине агрегаты такого типа недопустимо использовать при питании распределительной электрической сети 220 В от напряжения шесть тысяч Вольт.

Таким образом, достоинства автотрансформатора максимально проявляются при наименьшем коэффициенте трансформации, и в этом случае бывают представлены:

  • незначительным расходом стали для изготовления сердечника;
  • пониженным расходом меди для производства обмоток;
  • простотой и незначительными габаритами конструкции;
  • почти максимальным коэффициентом полезного действия, достигающим показателей 99 %;
  • меньшими потерями на обмотках и стальных магнитных проводах;
  • частичной передачей энергии с использованием электрических связей;
  • достаточной полезной мощностью;
  • наименьшими изменениями напряжения в условиях смены нагрузки;
  • доступной для рядового потребителя стоимостью.

При наличии высшего и низшего напряжения в условиях одного порядка отсутствуют препятствия для электрического соединения цепей.

Основные недостатки автотрансформатора заключаются в малом сопротивлении короткого замыкания, объясняющим высокую токовую кратность и возможность передачи высшего напряжения в сеть с низкими показателями, что обусловлено наличием электрической связи. Низковольтная схема внутри устройства напрямую зависит от наличия в сети достаточно высокого уровня напряжения, поэтому для предотвращения сбоев разрабатываются специальные схемы.

Лабораторный автотрансформатор

Кроме всего прочего, небольшое рассеивание, возникающее между обмотками, может спровоцировать короткое замыкание. Важно помнить, что соединение между обмотками в обязательном порядке должно быть максимально равномерным, а нейтраль обладает исключительно двумя блоками.

Следует отметить, что из-за конструктивных особенностей автотрансформатора достаточно проблематично сохранять целостность электромагнитного баланса, а балансировка потребует увеличения габаритов, что негативно сказывается на весе и стоимости прибора.

Устройство автотрансформатора

Для электромагнитного устройства статического типа характерно наличие одной обмотки, часть которой одновременно отвечает как за первичную, так и за вторичную сеть. Таким образом, в автотрансформаторе существует не только магнитная, но и электрическая связь, которая возникает между обмотками первичного и вторичного вида. В настоящее время прибор выпускается в виде одно- и трехфазного, а также двух- или трехобмоточного устройства.

Двухобмоточный трансформатор и автотрансформатор

Автотрансформаторы имеют определенный тип конструкции и некоторые особенности, представленные первой обмоткой, которая используется в качестве части второго контура агрегата или наоборот.

Поломку трансформатора можно определить при помощи мультиметра. – особенности прямого и косвенного методов проверки.

Схему подключения трансформатора с трех мест вы найдете .

С принципом действия трансформатора 220 на 12 вольт вы можете ознакомиться .

Принцип действия

Наиболее важные характеристики принципа действия стандартного автотрансформатора определены особенностью подключения обмоточной части.

В процессе подключения к катушке тока переменного типа внутри сердечника отмечается наличие магнитного потока.

Каждый виток на этом этапе эксплуатации прибора характеризуется индукцией электродвижущей силы с идентичной величиной.

Таким образом, принцип работы прибора объясняется стандартной схемой автотрансформатора, а в результате подсоединения нагрузки наблюдается перемещение вторичного электрического потока по обмотке. В это же время по проводнику осуществляется движение первичного тока. В результате величины двух потоков суммируются, поэтому на участок обмотки осуществляется подача незначительных по величине показателей электрического тока.

Как показывает практика эксплуатации автотрансформаторов, по некоторым основным параметрам принцип работы такого прибора имеет не слишком существенные отличия от традиционных трансформаторов двухобмоточного типа.

В настоящее время наряду с однофазными приборами находят достаточно широкое применение и устройства трехфазного типа, отличающиеся обмоткой. Существуют современные трёхфазные автотрансформаторы, имеющие два и три контура.

Основные защитные характеристики автотрансформатора представлены несколькими вариантами:

  • дифференциальная разновидность, предупреждающая выход из строя при любых нарушениях в обмотке;
  • принцип токовой отсечки, корректирующий неполадки, возникшие на ошинковках или вводах;
  • высокоэффективная токовая защита, которая четко срабатывает в условиях повреждения агрегата;
  • газовый вид, оповещающий даже о выделениях или понижении количества маслянистой жидкости.

Конструкцией предусмотрена защита при появлении замыкания или перегрузки, но прибор не подлежит эксплуатации, если замечено повреждение изолирующего слоя, отмечается сбой на соединительных участках, присутствуют сторонние звуки или слишком сильная вибрация, а также прибор имеет на корпусе выраженные трещины или многочисленные сколы.

Видео на тему