Вероятность протекания химических реакций. Почему протекают химические реакции? Энтропия. Направление химических процессов. Энергия Гиббса

Энтальпия - это величина, которая характеризует запас энергии в веществе.

Энтальпию еще называют теплосодержанием. Чем больше запас энергии, тем больше энтальпия вещества.

Тепловой эффект реакции (при постоянном давлении) равен изменению энтальпии (ΔН):

Для экзотермической реакции Q > 0, ΔН < 0, поскольку относительно реагентов энергия теряется в окружающую среду. И наоборот, для эндотермической реакции Q < 0, ΔН > 0 - энергия приобретается из окружающей среды.

По аналогии со стандартной теплотой образования Q o6p существует и понятие стандартной энтальпии образования, которая обозначается ΔH обр. Ее значения приводятся в справочных таблицах.

Термохимическое уравнение одной и той же реакции можно записать по-разному:

Организм человека - это уникальный «химический реактор», в котором идет множество разнообразных химических реакций. Их главное отличие от процессов, протекающих в пробирке, колбе, промышленной установке, состоит в том, что в организме все реакции протекают в «мягких» условиях (атмосферное давление, невысокая температура), при этом образуется мало вредных побочных продуктов.

Процесс окисления органических соединений кислородом - главный источник энергии в организме человека, а его основные конечные продукты - углекислый газ СO 2 и вода Н 2 O.

Например:

Эта выделившаяся энергия представляет собой большую величину, и если бы пища окислялась в организме быстро и полностью, то уже несколько съеденных кусочков сахара вызвали бы перегревание организма. Но биохимические процессы, суммарный тепловой эффект которых по закону Гесса не зависит от механизма и является постоянной величиной, идут ступенчато, как бы растянуты во времени. Поэтому организм не «сгорает», а экономно расходует эту энергию на процессы жизнедеятельности. Но всегда ли происходит так?

Каждый человек должен хотя бы приблизительно представлять, сколько энергии поступает в его организм с пищей и сколько расходуется в течение суток.

Одна из основ рационального питания такова: количество поступающей с пищей энергии не должно превышать расход энергии (или быть меньше) более чем на 5%, иначе нарушается обмен веществ, человек полнеет или худеет.

Энергетический эквивалент пищи - ее калорийность, выражаемая в килокалориях на 100 г продукта (часто указывают на упаковке, можно также найти в специальных справочниках и книгах по кулинарии). А расход энергии в организме зависит от возраста, пола, интенсивности труда.

Наиболее полезно питание с невысокой калорийностью, но с наличием всех компонентов в пище (белков, жиров, углеводов, минеральных веществ, витаминов, микроэлементов).

Энергетическая ценность продуктов питания и теплотворная способность топлива связаны с экзотермическими реакциями их окисления. Движущей силой таких реакций является «стремление» системы к состоянию с наименьшей внутренней энергией.

Экзотермические реакции начинаются самопроизвольно, или требуется только небольшой «толчок» - первоначальная подача энергии.

А что же тогда является движущей силой эндотермических реакций, в ходе которых тепловая энергия поступает из окружающей среды и запасается в продуктах реакции, превращаясь в их внутреннюю энергию? Это связано со стремлением любой системы к наиболее вероятному состоянию, которое характеризуется максимальным беспорядком, ее называют энтропией. Например, молекулы, входящие в состав воздуха, не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение, так как стремление к наиболее вероятному состоянию заставляет молекулы беспорядочно распределяться в пространстве.

Представьте, что вы насыпали в стакан разные орехи. Практически невозможно добиться при встряхивании их расслоения, упорядоченности, так как и в этом случае система будет стремиться к наиболее вероятному состоянию, при котором беспорядок в системе возрастает, поэтому орехи всегда будут перемешаны. Причем чем больше частиц мы имеем, тем вероятность беспорядка больше.

Самый большой порядок в химических системах - в идеальном кристалле при температуре абсолютного нуля. Говорят, что энтропия в данном случае равна нулю. С повышением температуры в кристалле начинают усиливаться беспорядочные колебания атомов (молекул, ионов). Энтропия увеличивается. Особенно резко это происходит в момент плавления при переходе от твердого тела к жидкости и еще в большей степени - в момент испарения при переходе от жидкости к газу.

Энтропия газов значительно превышает энтропию жидких и тем более твердых тел. Если вы прольете немного бензина в закрытом помещении, например в гараже, то скоро почувствуете его запах во всем объеме помещения. Происходит испарение (эндотермический процесс) и диффузия, беспорядочное распределение паров бензина по всему объему. Пары бензина имеют большую энтропию по сравнению с жидкостью.

Процесс кипения воды с энергетической точки зрения тоже эндотермический процесс, но выгоден с точки зрения увеличения энтропии при переходе жидкости в пар. При температуре 100 °С энтропийный фактор «перетягивает» энергетический - вода начинает кипеть - пары воды имеют большую энтропию по сравнению с жидкой водой.

Анализируя данные, приведенные в таблице 12, обратите внимание, насколько мало значение энтропии для алмаза, имеющего очень правильную структуру. Вещества, образованные более сложными частицами, обладают большими значениями энтропии. Например, энтропия этана больше энтропии метана.

Таблица 12
Некоторые значения стандартной молярной энтропии



Самопроизвольные эндотермические реакции - это как раз те реакции, в которых наблюдается достаточно сильный рост энтропии, например за счет образования газообразных продуктов из жидких или твердых веществ или же за счет увеличения числа частиц.

Например:

CaCO 3 → СаО + СO 2 - Q,

2NH 3 → N 2 + ЗН 2 - Q.

Сформулируем выводы.

  1. Направление химической реакции определяется двумя факторами: стремлением к уменьшению внутренней энергии с выделением энергии и стремлением к максимальному беспорядку, т. е. к увеличению энтропии.
  2. Эндотермическую реакцию можно заставить идти, если она сопровождается увеличением энтропии.
  3. Энтропия увеличивается при повышении температуры и особенно сильно при фазовых переходах: твердое - жидкое, твердое - газообразное.
  4. Чем выше температура, при которой проводят реакцию, тем большее значение будет иметь энтропийный фактор по сравнению с энергетическим.

Существуют экспериментальные и теоретические методы определения энтропий различных химических соединений. Используя эти методы, можно количественно рассчитать изменения энтропии при протекании конкретной реакции аналогично тому, как это делается для теплового эффекта реакции. В результате появляется возможность предсказать направление химической реакции (табл. 13).

Таблица 13
Возможность протекания химических реакций в зависимости от изменения энергии и энтропии

Чтобы ответить на вопрос о возможности осуществления реакции, ввели специальную величину - энергию Гиббса (G), которая позволяет учесть как изменение энтальпии, так и изменение энтропии:

ΔG = ΔН - TΔS,

где Т - абсолютная температура.

Самопроизвольно протекают только те процессы, в которых энергия Гиббса уменьшается, т. е. величина ΔG < 0. Процессы, при которых ΔG > 0, в принципе невозможны. Если ΔG = 0, т. е. ΔН = TΔS, то в системе установилось химическое равновесие (см. § 14).

Вернемся к случаю № 2 (см. табл. 13).

Все живое на нашей планете - от вирусов и бактерий до человека - состоит из высокоорганизованной материи, которая более упорядочена по сравнению с окружающим миром. Например, белок. Вспомните его структуры: первичная, вторичная, третичная. Вы уже хорошо знакомы и с «веществом наследственности» (ДНК), молекулы которого состоят из расположенных в строго определенной последовательности структурных единиц. Значит, синтез белка или ДНК сопровождается огромным уменьшением энтропии.

Кроме того, исходный строительный материал для роста растений и животных образуется в самих растениях из воды Н 2 O и углекислого газа СO 2 в процессе фотосинтеза:

6Н 2 O + 6СO 2(Г) → С6Н 12 O 6 + 6O 2(г) .

В этой реакции энтропия уменьшается, идет реакция с поглощением световой энергии. Значит, процесс эндотермический! Таким образом, реакции, которым мы обязаны жизнью, оказываются термодинамически запрещенными. Но они идут! А используется при этом энергия световых квантов в видимой области спектра, которая намного больше тепловой энергии (инфракрасных квантов). В природе эндотермические реакции с уменьшением энтропии, как вы видите, протекают в определенных условиях. Химики пока не могут создать такие условия искусственно.

Вопросы и задания к § 12


Введение. Термодинамические расчёты позволяют сделать вывод о возможности данного процесса, выбрать условия проведения химической реакции, определить равновесный состав продуктов, рассчитать теоретически достижимые степени превращения исходных веществ и выходы продуктов, а также энергетические эффекты (теплота реакции, теплота изменения агрегатного состояния), что необходимо для составления энергетических балансов и определения энергетических затрат.

Наиболее важные понятия термодинамики – “теплота процесса” и “работа”. Величины, характеризующие состояние термодинамической системы, называют термодинамическими параметрами. К ним относятся: температура, давление, удельный объём, плотность, молярный объём, удельная внутренняя энергия. Величины, пропорциональные массе (или количеству вещества) рассматриваемой термодинамической системы называются экстенсивными; это – объём, внутренняя энергия, энтальпия, энтропия. Интенсивные величины не зависят от массы термодинамической системы, и только они служат термодинамическими параметрами состояниями. Это – температура, давление, а также экстенсивные величины, отнесённые к единице массы, объема или количества вещества. Изменение интенсивных параметров с целью ускорения химико-технологических процессов называется интенсификацией.

При экзотермических реакциях запас внутренней энергии исходных веществ (U 1) больше, чем образующихся продуктов (U 2). Разность ∆U = U 1 – U 2 преобразуется в форму теплоты. Наоборот, при эндотермических реакциях вследствие поглощения некоторого количества теплоты внутренняя энергия веществ повышается (U 2 > U 1). ∆U выражают в Дж/моль или в технических расчётах их относят к 1 кг или 1 м 3 (для газов). Изучением тепловых эффектов реакций или агрегатных состояний, или смешения, растворения занимается раздел физической химии или химической термодинамики – термохимии. В термохимических уравнениях указывается тепловой эффект реакции. Например: С (графит) +О 2 = СО 2 +393,77 кДж/моль. Теплоты разложения имеют противоположный знак. Для их определения используют таблицы. По Д.П.Коновалову теплоты сгорания определяют из соотношения: Q сгор =204,2n+44,4m+∑x (кДж/моль), где n – число молей кислорода, требующихся для полного сгорания 1 моля данного вещества, m – число молей воды, образующихся при сгорании 1 моля вещества, ∑x – поправка, постоянная для данного гомологического ряда. Чем больше непредельность, тем больше ∑x.



Для углеводородов ацетиленового ряда ∑x=213 кДж/моль. Для этиленовых углеводородов ∑x=87,9 кДж/моль. Для предельных углеводородов ∑x=0. Если в молекуле соединения имеются различные функциональные группы и типы связей, то термическую характеристику находят суммированием.

Тепловой эффект реакции равен сумме теплот образования продуктов реакции минус сумма теплот образования исходных веществ с учётом количества молей всех участвующих в реакции веществ. Например, для реакции общего вида: n 1 A+n 2 B=n 3 C+n 4 D+Q x тепловой эффект: Q x =(n 3 Q C обр +n 4 Q D обр) – (n 1 Q A обр +n 2 Q B обр)

Тепловой эффект реакции равен сумме теплот сгорания исходных веществ минус сумма теплот сгорания продуктов реакции с учётом количества молей всех реагирующих веществ. Для той же общей реакции:

Q x =(n 1 Q A сгор +n 2 Q B сгор) – (n 3 Q C сгор +n 4 Q D сгор)

Вероятность протекания равновесных реакций определяют по константе термодинамического равновесия, которая определяется:

К р = e - ∆ G º/(RT) = e - ∆ H º/ RT ∙ e ∆ S º/ R Из анализа этого выражения видно, что для эндотермических реакций (Q < 0, ∆ Hº > 0 ) при убыли энтропии (∆Sº < 0) самопроизвольное протекание реакции невозможно так как – ∆G > 0 . В последующем термодинамический подход к химическим реакциям будет рассмотрен более подробно.

Лекция 4.

Основные законы термодинамики. Первое начало термодинамики. Теплоёмкость и энтальпия. Энтальпия реакции. Энтальпия образования соединения. Энтальпия сгорания. Закон Гесса и энтальпия реакции.

Первый закон термодинамики: изменение внутренней энергии (∆Е) системы равно работе внешних сил (А′) плюс количество переданной теплоты (Q): 1)∆Е=А′+Q; или (2-ой вид) 2)Q=∆Е+A – количество теплоты, переданное системе (Q) расходуется на изменение её внутренней энергии (∆Е) и работу (А), совершенную системой. Это один из видов закона сохранения энергии. Если изменение состояния системы очень мало, то: dQ=dE+δA – такая запись при малых (δ) изменениях. Для газа (идеального) δА=pdV. В изохорном процессе δА=0, то δQ V =dE, так как dE=C V dT, то δQ V =C V dT, где C V – теплоёмкость при постоянном объёме. В небольшом температурном интервале теплоёмкость постоянна, поэтому Q V =C V ∆T. Из этого уравнения можно определить теплоёмкость системы и теплоты процессов. C V – по закону Джоуля-Ленца. В изобарном процессе протекающем без совершения полезной работы, учитывая, что p постоянно и его можно вынести за скобку под знак дифференциала, т. е. δQ P =dE+pdV=d(E+pV)=dH, здесь H – энтальпия системы. Энтальпия – это сумма внутренней энергии (Е) системы и произведения давления на объём. Количество теплоты можно выразить через изобарную тёплоёмкость (С Р): δQ P =С Р dT, Q V =∆E(V = const) и Q P =∆H(p = const) – после обобщения. Отсюда следует, что количество теплоты, получаемое системой однозначно, определяется изменением некоторой функции состояния (энтальпии) и зависит только от начального и конечного состояний системы и не зависит от формы пути, по которому развивался процесс. Это положение лежит в основе рассмотрения вопроса о тепловых эффектах химических реакций.



Тепловой эффект реакции – это отнесённое к изменению химической переменной количество теплоты , полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру исходных реагентов (как правило Q V и Q P).

Реакции с отрицательным тепловым эффектом , т. е. с выделением теплоты в окружающую среду, называют экзотермическими. Реакции с положительным тепловым эффектом, т. е. идущие с поглощением теплоты из окружающей среды, называются эндотермическими.

Стехиометрическое уравнение реакции будет: (1) ∆H=∑b J H J - ∑a i H i или ∆H=∑y i H i ; j – символы продуктов, i – символы реагентов.

Это положение носит название закона Гесса : величины Е i , H i – функции состояния системы и, следовательно, ∆H и ∆Е, а тем самым и тепловые эффекты Q V и Q р (Q V =∆Е, Q р =∆H) зависят только от того, какие вещества вступают в реакцию при заданных условиях и какие получаются продукты, но не зависят от того пути, по которому проходил химический процесс (механизма реакции).

Иными словами, энтальпия химической реакции равна сумме энтальпий образования компонентов реакции, умноженных на стехиометрические коэффициенты соответствующих компонентов, взятых со знаком плюс для продуктов и со знаком минус для исходных веществ. Найдём в качестве примера ∆H для реакции PCl 5 +4H 2 O=H 3 PO 4 +5HCl (2)

Табличные значения энтальпий образования компоненты реакции равны соответственно для PCl 5 – 463кДж/моль, для воды (жидкой) – 286,2 кДж/моль, для H 3 PO 4 – 1288 кДж/моль, для HCl(газ) – 92,4 кДж/моль. Подставляя эти значения в формулу: Q V =∆Е, получим:

∆H=-1288+5(-92,4)–(-463)–4(-286,2)=-142кДж/моль

Для органических соединений, а также для CO легко осуществить процесс сгорания до CO 2 и H 2 O. Стехиометрическое уравнение сгорания органического соединения состава C m H n O p запишется в виде:

(3) C m H n O p +(р-m-n/4)O 2 =mCO 2 +n/2 H 2 O

Следовательно, энтальпия сгорания согласно (1) может быть выражена через энтальпии его образования и образования CO 2 и H 2 O:

∆H сг =m∆H CO 2 +n/2 ∆H H 2 O -∆H CmHnOp

Определив при помощи калориметра теплоту сгорания исследуемого соединения и зная ∆H CO 2 и ∆H H 2 O , можно найти энтальпию его образования.

Закон Гесса позволяет рассчитать энтальпии любых реакций, если для каждого компонента реакции известна одна его термодинамическая характеристика - энтальпия образования соединения из простых веществ. Под энтальпией образования соединения из простых веществ понимают ∆H реакции, приводящей к образованию одного моля соединения из элементов, взятых в их типичных агрегатных состояниях и аллотропных модификациях.

Лекция 5.

Второе начало термодинамики. Энтропия. Функция Гиббса. Изменение функции Гиббса при протекании химических реакций. Константа равновесия и функция Гиббса. Термодинамическая оценка вероятности протекания реакции.

Вторым началом термодинамики называется утверждение о том, что невозможно построение вечного двигателя второго рода. Закон получен опытным путём и имеет две эквивалентные друг другу формулировки:

а) невозможен процесс, единственным результатом которого является превращение всей теплоты, полученной от некоторого тела, в эквивалентную ей работу;

б) невозможен процесс, единственным результатом которого является передача энергии в форме теплоты от тела менее нагретого к телу более нагретому.

Функция δQ/T является полным дифференциалом некоторой функции S: dS=(δQ/T) обр (1) – эта функция S называется энтропией тела.

Здесь Q и S пропорциональны друг другу, то есть при увеличении (Q) (S) – увеличивается, и наоборот. Уравнение (1) соответствует равновесному (обратимому) процессу. Если процесс неравновесный, то энтропия увеличивается, тогда (1) преобразуется:

dS≥(δQ/T) (2) Таким образом, при протекании неравновесных процессов энтропия системы увеличивается. Если (2) подставить в первый закон термодинамики, то получим: dE≤TdS-δA. Его принято записывать в виде: dE≤TdS-δA’-pdV, отсюда: δA’≤-dE+TdS-pdV, здесь pdV – работа равновесного расширения, δA’- полезная работа. Интегрирование обеих частей этого неравенства для изохорно-изотермического процесса приводит к неравенству: A’ V -∆E+T∆S (3). А интегрирование для изобарно-изотермического процесса (Т=const, p=const) – к неравенству:

A’ P ≤ - ∆E+T∆S – p∆V=-∆H + T∆S (4)

Правые части (3 и 4) могут быть записаны как изменения некоторых функций, соответственно:

F=E-TS (5) и G=E-TS+pV; или G=H-TS (6)

F – энергия Гельмгольца, а G – энергия Гиббса, тогда (3 и 4) можно записать в виде A’ V ≤-∆F (7) и A’ P ≤-∆G (8). Закон равенства соответствует равновесному процессу. При этом совершается максимально полезная работа, то есть (A’ V) MAX =-∆F, и (A’ P) MAX =-∆G. F и G называют соответственно изохорно-изотермический и изобарно-изотермический потенциалы.

Равновесие химических реакций характеризуется процессом (термодинамическим) при котором система проходит непрерывный ряд равновесных состояний. Каждое из таких состояний характеризуется неизменностью (во времени) термодинамических параметров и отсутствием в системе потоков вещества и теплоты. Равновесное состояние характеризуется динамическим характером равновесия, то есть равенством прямого и обратного процессов, минимальным значением энергии Гиббса и энергии Гельмгольца (то есть dG=0 и d 2 G>0; dF=0 и d 2 F>0). При динамическом равновесии скорость прямой и обратной реакций одинаковы. Должно также соблюдаться равенство:

µ J dn J =0 , где µ J =(ðG/ðn J) T , P , h =G J – химический потенциал компонента J; n J – количество компонента J (моль). Большое значение µ J указывает на большую реакционную способность частиц.

∆Gº=-RTLnК р (9)

Уравнение (9) называют уравнением изотермы Вант-Гаффа. Значение ∆Gº в таблицах в справочной литературе для многих тысяч химических соединений.

К р = e - ∆ G º/(RT) = e - ∆ H º/ RT ∙ e ∆ S º/ R (11). Из (11) можно дать термодинамическую оценку вероятности протекания реакции. Так, для экзотермических реакций (∆Нº<0), протекающих с возрастанием энтропии, К р >1, а ∆G<0, то есть реакция протекает самопроизвольно. Для экзотермических реакций (∆Нº>0) при убыли энтропии (∆Sº>0) самопроизвольное протекание процесса невозможно.

Если ∆Нº и ∆Sº имеют один и тот же знак, термодинамическая вероятность протекания процесса определяется конкретными значениями ∆Нº, ∆Sº и Тº.

Рассмотрим на примере реакции синтеза аммиака совместное влияние ∆Н o и ∆S o на возможность осуществления процесса:

Для данной реакции ∆Н o 298 =-92,2 кДж/моль, ∆S o 298 =-198 Дж/(моль*К), Т∆S o 298 =-59кДж/моль, ∆G о 298 =-33,2кДж/моль.

Из приведённых данных видно, что изменение энтропии отрицательно и не благоприятствует протеканию реакции, но в то же время процесс характеризуется большим отрицательным энтальпийным эффектом ∆Нº, благодаря которому и возможно осуществление процесса. С ростом температуры реакция, как показывают калориметрические данные, становится ещё более экзотермической (при Т=725К, ∆Н=-113кДж/моль), но при отрицательном значении ∆S о повышение температуры весьма существенно уменьшает вероятность протекания процесса.

Пользуясь растворами солей марганца, железа, меди и цинка и раствором сульфида натрия, осадите в четырех пробирках указанные сульфиды, осадки промойте дистиллированной водой методом декантации , а затем добавьте к каждому из осадков 2‑3 мл разбавленного раствора серной кислоты. Что происходит? Сравните данные опыта с результатами расчета.

Опыт 3. Выбор направления протекания реакции

Между ионами Э 3+ и S 2– в водном растворе возможны следующие взаимодействия:

Обменное взаимодействие;

Взаимно усиливающийся гидролиз;

Окислительно‑восстановительная реакция, если степень окисления (+3) у элемента не слишком устойчива и может понижаться до (+2):

2Э 3+ + 3S 2– → Э 2 S 3 ,

2Э 3+ + 3S 2– + 6Н 2 О → 2Э(ОН) 3 + 3Н 2 S,

2Э 3+ + 3S 2– → 2ЭS + S.

Пользуясь данными таблицы 2, выполните необходимые расчеты и выясните, какой из этих вариантов протекания реакций наиболее вероятен с термодинамической точки зрения при взаимодействии раствора сульфида натрия с солями трехзарядных катионов железа, алюминия, хрома и висмута.

Таблица 2

Вещество ∆ f G о, кДж/моль Вещество ∆ f G о, кДж/моль
Fe 3+ (р-р) – 10,53 FeS – 100,8
Al 3+ (р-р) – 490,5 Bi 2 S 3 – 152,9
Cr 3+ (р-р) – 223,2 Al 2 S 3 – 492,5
Bi 3+ (р-р) + 91,9 Fe(OH) 3 – 699,6
S 2 – (р-р) + 85,40 Cr(OH) 3 – 849,0
H 2 S – 33,50 Bi(OH) 3 – 580,3
H 2 O (ж.) – 237,23 Al(OH) 3 – 1157,0
H 2 O (г.) – 228,61

По каким внешним признакам в каждом конкретном случае можно определить, какое именно взаимодействие осуществилось?

В три пробирки налейте по 1‑2 мл растворов указанных солей и добавьте по 1 мл раствора сульфида натрия. Что наблюдается в каждом случае?

Совпадает ли прогноз с результатами опыта?

Тема: ХИМИЧЕСКАЯ КИНЕТИКА. КАТАЛИЗ. РАВНОВЕСИЕ

Лабораторная работа № 7

Химическая кинетика



Литература: 1. С. 104-112; 3. С. 65-68; 4. С. 61-64.

Цель работы: изучение влияния концентрации реагирующих веществ и температуры на скорость химической реакции.

Вопросы и упражнения для самоподготовки.

1. Предмет химической кинетики. Дать определение скорости химической реакции. Перечислить факторы, влияющие на скорость химической реакции.

2. Привести математическое выражение скорости химической реакции. Объяснить, почему в математическом выражении скорости стоит знак минус. Как зависит скорость реакции от температуры?

3. Сформулировать закон действующих масс. Каков физический смысл константы скорости, и какие факторы влияют на ее величину?

Влияние температуры на скорость химической реакции.

4. Энергия активации. Активированный комплекс. Энтропия активации.

5. Кинетическая классификация реакций. Молекулярность и порядок реакции.

6. Катализаторы и катализ.

7. Гомогенный катализ. Теория промежуточных соединений.

8. Обратимые и необратимые процессы. Условия наступления химического равновесия. Константа химического равновесия и факторы, на нее влияющие.

9. Принцип Ле Шателье. Смещение химического равновесия.

1. Как изменится скорость реакции 2NO + O 2 = 2NO 2 , если уменьшить объем реакционного сосуда в 3 раза?

2. Найти значение константы скорости реакции А + В = АВ, если при концентрациях вещества А и В, равных соответственно 0,5 и 0,1 моль/л, скорость реакции равна 0,005 мол/л·с.

3. Определить, на сколько градусов следует повысить температуру, чтобы скорость реакции возросла в 8 раз, если температурный коэффициент скорости реакции равен 2.



Оборудование. Пробирки мерные – 8 шт. Пипетка Пастера (5 мл) – 2 шт. Стакан химический (100 мл). Баня водяная. Термометр лабораторный (100 0 С). Секундомер (или метроном). Плитка электрическая.

Реактивы: Тиосульфат натрия 0,5 % раствор , серная кислота 0,5 % раствор, дистиллированная вода.

Основные понятия химической термодинамики

Химические процессы могут протекать с изменением химического состава вещества (химические реакции) и без его изменения (фазовые переходы). Совокупность веществ, находящихся во взаимодействии и выделенных из окружающего пространства (мысленно) называется системой . Например: атом водорода (система из ядра и электрона), водный раствор различных солей и т.д.

В зависимости от характера взаимодействия системы с окружающей средой различают: открытые или незамкнутые (происходит обмен теплом, энергией и веществом с окружающей средой), закрытые или замкнутые (происходит обмен теплом и энергией с окружающей средой, но нет обмена веществом) и изолированные (отсутствие массо- и теплопереноса между системой и окружающей средой) (рис. 1).

Рис. 1. Примеры закрытой (а), открытой (б) и изолированной систем (в).

Состояние системы определяется совокупностью ее свойств и характеризуется термодинамическими параметрами температурой, давлением и объемом (T, p, V). Любое изменение одного или нескольких параметров системы называется термодинамическим процессом. Так, повышение температуры приводит к изменению внутренней энергии системы (U).

ОПРЕДЕЛЕНИЕ

Внутренняя энергия – суммарных запас молекул, атомов, электронов и ядер, составляющих систему, складывающийся из кинетической энергии этих частиц и энергии взаимодействия между ними.

Нельзя рассчитать или измерить абсолютное значение U. Возможно определить изменение внутренней энергии (ΔU) в результате какого-либо процесса. ΔU любой системы при переходе из одного состояния в другое не зависит от пути перехода, а определяется начальным и конечным положениями системы. Это означает, что внутренняя энергия системы — функция состояния.

ΔU = U 2 – U 1 ,

Где 1 и 2 – символы начального и конечного состояния системы.

Первое начало термодинамики: сообщенное системе тепло Q расходуется на приращение внутренней энергии и на совершение работы (А) против внешних сил:

Следует отметить, что А и Q не являются функциями состояния, т.е. не зависят от пути протекания процесса.

В термодинамике нередко вводят величины, которые тождественны сумме нескольких термодинамических параметров. Такая замена существенно облегчает расчеты. Так, функцию состояния, равную U + pV, называют энтальпией (Н):

При постоянном давлении (изобарный процесс) и в отсутствии других работ, кроме работы расширения, теплота равна изменению энтальпии:

Q p = ΔU + pΔV = ΔH

Если процесс идет при постоянном объеме (изохорный) и в отсутствие других работ, выделившаяся или поглотившаяся теплота соответствует изменению внутренней энергии:

Основы термохимии

Раздел химической термодинамики, изучающий теплоты химических реакций и их зависимость от различных физико-химических параметров, называют термохимией. В термохимии пользуются термохимическими уравнениями реакций, в которых указывают агрегатное состояние вещества, а тепловой эффект реакции рассматривается как один из продуктов. Например:

2H 2(g) + O 2(g) = H 2 O (g) + 242 кДж,

Что означает, что при образовании 1 моль воды в газообразном состоянии выделяется 242 кДж тепла. При этом изменение энтальпии ΔH = − 242 кДж.

Противоположные знаки Q и ΔH свидетельствуют о том, что в первом случае – это характеристика процессов в окружающей среде, а во втором – в системе. При экзотермическом процессе Q > 0, ΔH < 0, а при эндотермическом – наоборот.

Тепловые эффекты можно не только измерять, но и рассчитывать с помощью закона Гесса: тепловой эффект химической реакции, протекающей при постоянных p и V не зависит от числа промежуточных стадий, а определяется лишь начальным и конечным состоянием системы.

Следствия закона Гесса

Из закона Гесса есть 5 следствий:

1) Тепловой эффект образования 1 моль сложного вещества из простых веществ, при стандартный условиях, называется теплотой образования этого вещества – ΔH 0 f . Так, например, ΔH 0 f (CO 2) из С (s) и O 2(g) будет равен −393,51 кДж.

2) Стандартные теплоты образования простых веществ равны нулю.

3) Стандартный тепловой эффект химической реакции (ΔH 0) равен разности между суммой теплот образования продуктов реакции (с учетом стехиометрических коэффициентов) и суммой теплот образования исходных веществ (с учетом стехиометрических коэффициентов):

ΔH 0 = Σ ΔH 0 f (продукты) − Σ ΔH 0 f (реагенты)

Например, для реакции:

2H 2 S (g) + 3O 2(g) = 2SO 2(g) + 2H 2 O (aq)

ΔH 0 = Σ (2 × ΔH 0 f (SO 2) + 2 × ΔH 0 f (H 2 O)) – Σ (2 ΔH 0 f (H 2 S) +0)

4) Тепловой эффект химической реакции равен разности между суммой теплот сгорания исходных веществ и суммой теплот сгорания продуктов реакции с учетом стехиометрических коэффициентов

5) С термохимическими уравнениями можно производить все алгебраические действия, например:

A= B + C + 400 кДж

B + D = A − 200 кДж

Сложив эти уравнения получим

A + B + D = B + C + A + 200 кДж

D = C + 200 кДж

ΔH 0 = − 200 кДж

Энтропия. Направление химических процессов. Энергия Гиббса

ОПРЕДЕЛЕНИЕ

Энтропия (S) – свойство системы, изменение которого при обратимом процессе численно равно отношению теплоты к температуре протекания процесса:

Например, при испарении воды в условиях кипения (Т =373 К, р=1 атм) изменение энтропии равно ΔS = ΔH исп /373 = 44000/373 = 118 кДж/(моль × К).

На основании о стандартной энтропии веществ (S 0) можно рассчитать изменение энтропии различный процессов:

Δ r S 0 = Σ n i S 0 − Σ n j S 0 ,

где i – продукты реакции, j – исходные вещества.

Энтропия простых веществ не равна нулю.

Рассчитав Δ r S 0 и Δ r H 0 можно сделать вывод об обратимости реакции. Так, если Δ r S 0 и Δ r H 0 больше нуля или Δ r S 0 и Δ r H 0 меньше нуля, то реакция носит обратимый характер.

Существует функция, которая связывает изменение энтальпии и энтропии и отвечает на вопрос о самопроизвольности протекания реакции – энергия Гиббса (G).

ΔG = ΔH − Т × ΔS

Δ r G 0 = Δ r H 0 − Т × Δ r S 0

О направлении протекания химической реакции судят по величине Δ r G 0 . Если Δ r G 0 <0, то реакция идет в прямом направлении, а если Δ r G 0 > 0 – в обратном. С наибольшей вероятностью из 2х реакций будет протекать та, у которой меньше значение Δ r G 0 .

Таблица 1. Условия самопроизвольности протекания химических реакций

Примеры решения задач

ПРИМЕР 1

ПРИМЕР 1

Задание Рассчитайте изменение энергии Гиббса (ΔG o 298) для процесса:

Na 2 O(т) + H 2 O(ж) → 2NaOH(т)

Возможно ли самопроизвольное протекание реакции при стандартных условиях и 298К?

Необходимые справочные данные: ΔG o f (NaOH,т) = –381,1 кДж/моль, ΔG o f (Na 2 O) = –378 кДж/моль, Δ G o f (H 2 O,ж) = –237 кДж/моль.

Решение При стандартных условиях и T=298К ΔG o 298 можно рассчитать как разность суммарной энергии Гиббса (ΔG o f) образования продуктов реакции и суммарной энергии Гиббса образования исходных веществ:

ΔG o 298 = 2ΔG o f (NaOH,т) – [ΔG o f (Na 2 O,т) + Δ G o f (H 2 O,ж)]

ΔG o 298 = 2(–381,1) –[–378 + (–237)] = –147,2 кДж.

Значение ΔG o 298 отрицательно, поэтому самопроизвольное протекание реакции возможно.

Ответ ΔG o 298 = –147,2 кДж, самопроизвольное протекание реакции возможно.
– (от греч. кинетикос – движущий) наука о механизмах химических реакций и закономерностях их протекания во времени. В 19 в. результате развития основ химической термодинамики химики научились рассчитывать состав равновесной смеси для обратимых химических реакций. Кроме того, на основании несложных расчетов можно было, не проводя экспериментов, сделать вывод о принципиальной возможности или невозможности протекания конкретной реакции в данных условиях. Однако «принципиальная возможность» реакции еще не означает, что она пойдет. Например, реакция С + О 2 ® СО 2 с точки зрения термодинамики весьма благоприятна, во всяком случае, при температурах ниже 1000 ° С (при более высоких температурах происходит уже распад молекул СО 2 ), т.е. углерод и кислород должны (практически со 100%-ным выходом) превратиться в диоксид углерода. Однако опыт показывает, что кусок угля может годами лежать на воздухе, при свободном доступе кислорода, не претерпевая никаких изменений. То же можно сказать и о множестве других известных реакций. Например, смеси водорода с хлором или с кислородом могут сохраняться очень долго без всяких признаков химических реакций, хотя в обоих случаях реакции термодинамически благоприятны. Это означает, что после достижения равновесия в стехиометрической смеси H 2 + Cl 2 должен остаться только хлороводород, а в смеси 2Н 2 + О 2 – только вода. Другой пример: газообразный ацетилен вполне стабилен, хотя реакция C 2 H 2 ® 2C + H 2 не только термодинамически разрешена, но и сопровождается значительным выделением энергии. Действительно, при высоких давлениях, ацетилен взрывается, однако в обычных условиях он вполне стабилен.

Термодинамически разрешенные реакции, подобные рассмотренным, могут пойти только в определенных условиях. Например, после поджигания уголь или сера самопроизвольно соединяются с кислородом; водород легко реагирует с хлором при повышении температуры или при действии ультрафиолетового света; смесь водорода с кислородом (гремучий газ) взрывается при поджигании или при внесении катализатора. Почему же для осуществления всех этих реакций необходимы специальные воздействия – нагревание, облучение, действие катализаторов? Химическая термодинамика не дает ответа на этот вопрос – понятие времени в ней отсутствует. В то же время для практических целей очень важно знать, пройдет ли данная реакция за секунду, за год или же за многие тысячелетия.

Опыт показывает, что скорость разных реакций может отличаться очень сильно. Практически мгновенно идут многие реакции в водных растворах. Так, при добавлении избытка кислоты к щелочному раствору фенолфталеина малинового цвета раствор мгновенно обесцвечивается, это означает, что реакция нейтрализации, а также реакция превращения окрашенной формы индикатора в бесцветную идут очень быстро. Значительно медленнее идет реакция окисления водного раствора иодида калия кислородом воздуха: желтая окраска продукта реакции – иода появляется лишь через продолжительное время. Медленно протекают процессы коррозии железных и особенно медных сплавов, многие другие процессы.

Предсказание скорости химической реакции, а также выяснение зависимости этой скорости от условий проведения реакции – одна из важных задач химической кинетики – науки, изучающей закономерности протекания реакций во времени. Не менее важна и вторая задача, стоящая перед химической кинетикой – изучение механизма химических реакций, то есть детального пути превращения исходных веществ в продукты реакции.

Скорость реакции. Проще всего определить скорость для реакции, протекающей между газообразными или жидкими реагентами в гомогенной (однородной) смеси в сосуде постоянного объема. В этом случае скорость реакции определяется как изменение концентрации любого из участвующих в реакции веществ (это может быть исходное вещество или продукт реакции) в единицу времени. Это определение можно записать в виде производной: v = dc /dt , где v – скорость реакции; t – временя, c – концентрация. Эту скорость легко определить, если есть экспериментальные данные по зависимости концентрации вещества от времени. По этим данным можно построить график, который называется кинетической кривой. Скорость реакции в заданной точке кинетической кривой определяется наклоном касательной в этой точке. Определение наклона касательной всегда связано с некоторой ошибкой. Точнее всего определяется начальная скорость реакции, поскольку вначале кинетическая кривая обычно близка к прямой; это облегчает проведение касательной в начальной точке кривой.

Если время измерять в секундах, а концентрацию – в молях на литр, то скорость реакции измеряется в единицах моль/(л

· с). Таким образом, скорость реакции не зависит от объема реакционной смеси: при одинаковых условиях она будет одинаковой и в маленькой пробирке, и в многотоннажном реакторе.

Величина d

t всегда положительна, тогда как знак d c зависит от того, как изменяется со временем концентрация – уменьшается (для исходных веществ) или увеличивается (для продуктов реакции). Чтобы скорость реакции всегда оставалась величиной положительной, в случае исходных веществ перед производной ставят знак минус: v = –dc /dt . Если реакция идет в газовой фазе, вместо концентрации веществ в уравнении скорости часто используют давление. Если газ близок к идеальному, то давление р связано с концентрацией с простым уравнением: p = cRT . В ходе реакции разные вещества могут расходоваться и образовываться с разной скоростью, в соответствии с коэффициентами в стехиометрическом уравнении (см . СТЕХИОМЕТРИЯ ), поэтому, определяя скорость конкретной реакции, следует учитывать эти коэффициенты. Например, в реакции синтеза аммиака 3H 2 + N 2 ® 2NH 3 водород расходуется в 3 раза быстрее, чем азот, а аммиак накапливается в 2 раза быстрее, чем расходуется азот. Пэтому уравнение скорости для этой реакции записывают следующим образом: v = –1/3 dp (H 2)/dt = –dp (N 2)/dt = +1/2 dp (NH 3)/dt . В общем случае, если реакция стехиометрическая, т.е. протекает точно в соответствии с записанным уравнением: aA + b B ® cC + dD, ее скорость определяют как v = –(1/a)d[A]/dt = –(1/b)d[B]/dt = (1/c)d[C]/dt = (1/d)d[D]/dt (квадратными скобками принято указывать молярную концентрацию веществ). Таким образом, скорости по каждому веществу жестко связаны между собой и, определив экспериментально скорость для любого участника реакции, легко рассчитать ее для любого другого вещества.

Большинство реакций, используемых в промышленности, относятся к гетерогенно-каталитическим. Они протекают на поверхности раздела фаз между твердым катализатором и газовой или жидкой фазой. На поверхности раздела двух фаз протекают и такие реакции как обжиг сульфидов, растворение металлов, оксидов и карбонатов в кислотах, ряд других процессов. Для таких реакций скорость зависит и от величины поверхности раздела, поэтому скорость гетерогенной реакции относят не к единице объема, а к единице поверхности. Измерить величину поверхности, на которой идет реакция,

не всегда просто.

Если реакция протекает в замкнутом объеме, то ее скорость в большинстве случаев максимальна в начальный момент времени (когда максимальна концентрация исходных веществ), а затем, по мере превращения исходных реагентов в продукты и, соответственно, снижения их концентрации, скорость реакции уменьшается. Встречаются и реакции, в которых скорость увеличивается со временем. Например, если медную пластинку опустить в раствор чистой азотной кислоты, то скорость реакции будет расти со временем, что легко наблюдать визуально. Ускоряются со временем также процессы растворения алюминия в растворах щелочей, окисления многих органических соединений кислородом, ряд других процессов. Причины такого ускорения могут быть разными. Например, это может быть связано с удалением защитной оксидной пленки с поверхности металла, или с постепенным разогревом реакционной смеси, или с накоплением веществ, ускоряющих реакцию (такие реакции называются автокаталитическими).

В промышленности реакции обычно проводят путем непрерывной подачи в реактор исходных веществ и вывода продуктов. В таких условиях можно добиться постоянной скорости протекания химической реакции. С постоянной скоростью протекают и фотохимические реакции при условии полного поглощения падающего света (см . ФОТОХИМИЧЕСКИЕ РЕАКЦИИ ).

Лимитирующая стадия реакции. Если реакция осуществляется путем последовательно протекающих стадий (не обязательно все из них являются химическими) и одна из этих стадий требует значительно большего времени, чем остальные, то есть идет намного медленнее, то такая стадия называется лимитирующей. Именно эта самая медленная стадия определяет скорость всего процесса. Рассмотрим в качестве примера каталитическую реакцию окисления аммиака. Здесь возможны два предельных случая.

1. Поступление молекул реагентов – аммиака и кислорода к поверхности катализатора (физический процесс) происходит значительно медленнее, чем сама каталитическая реакция на поверхности. Тогда для повышения скорости образования целевого продукта – оксида азота совершенно бесполезно повышать эффективность катализатора, а надо позаботиться об ускорении доступа реагентов к поверхности.

2. Подача реагентов к поверхности происходит значительно быстрее самой химической реакции. Вот здесь имеет смысл совершенствовать катализатор, подбирать оптимальные условия для каталитической реакции, так как лимитирующей стадией в данном случае является каталитическая реакция на поверхности.

Теория столкновений. Исторически первой теорией, на основании которой можно было рассчитывать скорости химических реакций, была теория столкновений. Очевидно, что для того, чтобы молекулы прореагировали, они прежде всего должны столкнуться. Отсюда следует, что реакция должна идти тем быстрее, чем чаще сталкиваются друг с другом молекулы исходных веществ. Поэтому каждый фактор, влияющий на частоту столкновений между молекулами, будет влиять и на скорость реакции. Некоторые важные закономерности, касающиеся столкновений между молекулами, были получены на основании молекулярно-кинетической теории газов.

В газовой фазе молекулы движутся с большими скоростями (сотни метров в секунду) и очень часто сталкиваются друг с другом. Частота столкновений определяется прежде всего числом частиц в единице объема, то есть концентрацией (давлением). Частота столкновений зависит также и от температуры (с ее повышением молекулы движутся быстрее) и от размера молекул (большие молекулы сталкиваются друг с другом чаще, чем маленькие). Однако концентрация влияет на частоту столкновений значительно сильнее. При комнатной температуре и атмосферном давлении каждая молекула средних размеров испытывает в секунду несколько миллиардов столкновений.

® С между двумя газообразными соединениями А и В, предполагая, что химическая реакция проходит при каждом столкновении молекул реагентов. Пусть в литровой колбе при атмосферном давлении есть смесь реагентов А и В при равных концентрациях. Всего в колбе будет 6 · 10 23 /22,4 = 2,7 · 10 22 молекул, из которых 1,35 · 10 22 молекул вещества А и столько же молекул вещества В. Пусть за 1 с каждая молекула А испытывает 10 9 столкновений с другими молекулами, из которых половина (5 · 10 8 ) приходится на столкновения с молекулами В (столкновения А + А не приводят к реакции). Тогда всего в колбе за 1 с происходит 1,35 · 10 22 · 5 · 10 8 ~ 7 · 10 30 столкновений молекул А и В. Очевидно, что если бы каждое из них приводило к реакции, она прошла бы мгновенно. Однако многие реакции идут достаточно медленно. Отсюда можно сделать вывод, что лишь ничтожная доля столкновений между молекулами реагентов приводит к взаимодействию между ними.

Для создания теории, которая позволяла бы рассчитать скорость реакции на основании молекулярно-кинетической теории газов, нужно было уметь рассчитывать общее число столкновений молекул и долю «активных» столкновений, приводящих реакции. Нужно было также объяснить, почему скорость большинства химических реакций сильно возрастает при повышении температуры – скорость молекул и частота столкновений между ними увеличиваются с температурой незначительно – пропорционально

, то есть всего в 1,3 раза при повышении температуры от 293 К (20 ° С) до 373 К (100 ° С), тогда как скорость реакции при этом может увеличиться в тысячи раз.

Эти проблемы были решены на основании теории столкновений следующим образом. При столкновениях молекулы непрерывно обмениваются скоростями и энергиями. Так, данная молекула в результате «удачного» столкновения может заметно увеличить свою скорость, тогда как при «неудачном» столкновении она может почти остановиться (похожую ситуацию можно наблюдать на примере бильярдных шаров). При нормальном атмосферном давлении столкновения, а следовательно, изменения скорости происходят с каждой молекулой миллиарды раз в секунду. При этом скорости и энергии молекул в значительной степени усредняются. Если в данный момент времени «пересчитать» в заданном объеме газа молекулы, обладающие определенными скоростями, то окажется, что значительная часть их имеет скорость, близкую к средней. В то же время многие молекулы обладают скоростью меньше средней, а часть движется со скоростями больше средней. С увеличением скорости доля молекул, имеющих данную скорость, быстро уменьшается. В соответствии с теорией столкновений, реагируют только те молекулы, которые при столкновении обладают достаточно высокой скоростью (и, следовательно, большим запасом кинетической энергии). Такое предположение было сделано в 1889 году шведским химиком Сванте Аррениусом

. Энергия активации. Аррениус ввел в обиход химиков очень важное понятие энергии активации ( E a ) – это та минимальная энергия, которой должна обладать молекула (или пара реагирующих молекул), чтобы вступить в химическую реакцию. Энергию активации измеряют обычно в джоулях и относят не к одной молекуле (это очень маленькая величина), а к молю вещества и выражают в единицах Дж/моль или кДж/моль. Если энергия сталкивающихся молекул меньше энергии активации, то реакция не пойдет, а если равна или больше, то молекулы прореагируют.

Энергии активации для разных реакций определяют экспериментально (из зависимости скорости реакции от температуры). Изменяться энергия активации может в довольно широких пределах – от единиц до нескольких сотен кДж/моль. Например, для реакции 2NO

2 ® N 2 O 4 энергия активации близка к нулю, для реакции 2Н 2 О 2 ® 2Н 2 О + О 2 в водных растворах E a = 73 кДж/моль, для термического разложения этана на этилен и водород E a = 306 кДж/моль.

Энергия активации большинства химических реакций значительно превышает среднюю кинетическую энергию молекул, которая при комнатной температуре составляет всего лишь около 4 кДж/моль и даже при температуре 1000

° С не превышает 16 кДж/моль. Таким образом, чтобы прореагировать, молекулы обычно должны иметь скорость значительно больше средней. Например, в случае E a = 200 кДж/моль сталкивающиеся молекулы небольшой молекулярной массы должны иметь скорость порядка 2,5 км/с (энергия активации в 25 раз больше средней энергии молекул при 20 ° С). И это – общее правило: для большинства химических реакций энергия активации значительно превышает среднюю кинетическую энергию молекул.

Вероятность для молекулы запасти в результате серии столкновений большую энергию очень мала: такой процесс требует для нее колоссального числа последовательных «удачных» столкновений, в результате которых молекула только набирает энергию, не теряя ее. Поэтому для многих реакций лишь ничтожная доля молекул имеет энергию, достаточную для преодоления барьера. Эта доля, в соответствии с теорией Аррениуса, определяется формулой:

a = e –E a /RT = 10 –E a /2,3RT ~ 10 –E a /19 Т, где R = 8,31 Дж/(моль . К). Из формулы следует, что доля молекул, обладающих энергией E a , как и доля активных столкновений a , очень сильно зависит как от энергии активации, так и от температуры. Например, для реакции с E a = 200 кДж/моль при комнатной температуре (Т ~ 300 К) доля активных столкновений ничтожно мала: a = 10 –200000/(19, 300) ~ 10 –35 . И если каждую секунду в сосуде происходит 7 · 10 30 столкновений молекул А и В, то понятно, что реакция идти не будет.

Если увеличить вдвое абсолютную температуру, т.е. нагреть смесь до 600 К (327° С); при этом доля активных столкновений резко возрастет:

a = 10 –200000/(19, 600) ~ 4·10 –18 . Таким образом, повышение температуры в 2 раза увеличило долю активных столкновений в 4·10 17 раз. Теперь каждую секунду из общего числа примерно 7·10 30 столкновений к реакции будет приводить 7·10 30 ·4·10 –18 ~ 3·10 13 . Такая реакция, в которой каждую секунду исчезает 3·10 13 молекул (из примерно 10 22 ), хотя и очень медленно, но все же идет. Наконец, при температуре 1000 К (727° C) a ~ 3·10 –11 (из каждых 30 миллиардов столкновений данной молекулы реагента одно приводит к реакции). Это уже много, так как за 1 с в реакцию будут вступать 7·10 30 ·3·10 –11 = 2·10 20 молекул, и такая реакция пройдет за несколько минут (с учетом снижения частоты столкновений с уменьшением концентрации реагентов).

Теперь понятно, почему повышение температуры может так сильно увеличить скорость реакции. Средняя скорость (и энергия) молекул с повышением температуры увеличивается незначительно, но зато резко повышается доля «быстрых» (или «активных») молекул, обладающих достаточной для протекания реакции скоростью движения или достаточной колебательной энергией.

Расчет скорости реакции с учетом общего числа столкновений и доли активных молекул (т.е. энергии активации), часто дает удовлетворительное соответствие с экспериментальными данными. Однако для многих реакций наблюдаемая на опыте скорость оказывается меньше рассчитанной по теории столкновений. Это объясняется тем, что для осуществления реакции нужно, чтобы столкновение было удачным не только энергетически, но и «геометрически», то есть молекулы должны в момент столкновения определенным образом ориентироваться относительно друг друга. Таким образом, при расчетах скорости реакций по теории столкновений, помимо энергетического, учитывают и стерический (пространственный) фактор для данной реакции.

Уравнение Аррениуса. Зависимость скорости реакции от температуры обычно описывают уравнением Аррениуса, которое в простейшем виде можно записать как v = v 0 a = v 0 e –E a/RT , где v 0 – скорость, которую имела бы реакция при нулевой энергии активации (фактически это частота столкновений в единице объеме). Поскольку v 0 слабо зависит от температуры, все определяет второй сомножитель – экспоненциальный: с увеличением температуры этот сомножитель быстро увеличивается, причем тем быстрее, чем больше энергия активации Е а. Указанная зависимость скорости реакции от температуры называется уравнением Аррениуса, оно – одно из важнейших в химической кинетике. Для приблизительной оценки влияния температуры на скорость реакции иногда используют так называемое «правило Вант-Гоффа» (см . ВАНТ-ГОФФА ПРАВИЛО ).

Если реакция подчиняется уравнению Аррениуса, логарифм ее скорости (измеренной, например, в начальный момент) должен линейно зависеть от абсолютной температуры, то есть график зависимости ln

v от 1/Т должен быть прямолинейным. Наклон этой прямой равен энергии активации реакции. По такому графику можно предсказать, какова будет скорость реакции при данной температуре или же – при какой температуре реакция будет идти с заданной скоростью . Несколько практических примеров использования уравнения Аррениуса.

1. На упаковке замороженного продукта написано, что его можно хранить на полке холодильника (5° С) в течение суток, в морозильнике, отмеченном одной звездочкой (–6° С), – неделю, двумя звездочками (–12° С) – месяц, а в морозильнике со значком *** (что означает температуру в нем –18° С) – 3 месяца. Предположив, что скорость порчи продукта обратно пропорциональна гарантийному сроку хранения

t хр, в координатах ln t хр , 1/ Т получаем, в соответствии с уравнением Аррениуса, прямую. Из нее можно рассчитать энергию активации биохимических реакций, приводящие к порче данного продукта (около 115 кДж/моль). Из того же графика можно выяснить, до какой температуры надо охладить продукт, чтобы его можно было хранить, например, 3 года; получается –29° С.

2. Альпинисты знают, что в горах трудно сварить яйцо, и вообще любую пищу, требующую более или менее длительного кипячения. Качественно причина этого понятна: с понижением атмосферного давления уменьшается температура кипения воды. С помощью уравнения Аррениуса можно рассчитать, сколько времени потребуется, например, чтобы сварить вкрутую яйцо в г. Мехико, расположенном на высоте 2265 м, где нормальным считается давление 580 мм рт.ст., а вода при таком пониженном давлении кипит при 93° С. Энергия активации реакция «свертывания» (денатурации) белка была измерена и оказалась очень большой по сравнению со многими другими химическими реакциями – порядка 400 кДж/моль (она может несколько отличаться для различных белков). В таком случае понижение температуры от 100 до 93° С (то есть от 373 до 366 К) приведет к замедлению реакции в 10

(400000/19)(1/366 – 1/373) = 11,8 раза. Именно поэтому жители высокогорья предпочитают варке пищи ее жарку: температура сковородки, в отличие от температуры кастрюли с кипятком, не зависит от атмосферного давления.

3. В кастрюле-скороварке пища готовится при повышенном давлении и, следовательно, при повышенной температуре кипения воды. Известно, что в обычной кастрюле говядина варится 2–3 часа, а компот из яблок – 10–15 мин. Учитывая, что оба процесса имеют близкую энергию активации (около 120 кДж/моль), можно по уравнению Аррениуса рассчитать, что в скороварке при 118°С мясо будет вариться 25–30 мин, а компот – всего 2 мин.

Уравнение Аррениуса очень важно для химической промышленности. При протекании экзотермической реакции выделяющаяся тепловая энергия нагревает не только окружающую среду, но и сами реагенты. это может привести к нежелательному сильному ускорению реакции. Расчет изменения скорости реакции и скорости тепловыделения при повышении температуры позволяет избежать теплового взрыва (см . ВЗРЫВЧАТЫЕ ВЕЩЕСТВА ).

Зависимость скорости реакции от концентрации реагентов. Скорость большинства реакций со временем постепенно снижается. Этот результат хорошо согласуется с теорией столкновений: по мере протекания реакции концентрации исходных веществ падают, снижается и частота столкновений между ними; соответственно уменьшается и частота столкновения активных молекул. Это приводит к уменьшению скорости реакции. В этом состоит сущность одного из основных законов химической кинетики: скорость химической реакции пропорциональна концентрации реагирующих молекул. Математически это можно записать в виде формулы v = k [A][B], где k – постоянная, называемая константой скорости реакции. Приведенное уравнение называется уравнением скорости химической реакции или кинетическим уравнением. Константа скорости для данной реакции не зависит от концентрации реагентов и от времени, но она зависит от температуры в соответствии с уравнением Аррениуса: k = k 0 e –E a/RT . Простейшее уравнение скорости v = k [A][B] всегда справедливо в том случае, когда молекулы (или другие частицы, например, ионы) А, сталкиваясь с молекулами В, могут непосредственно превращаться в продукты реакции. Подобные реакции, идущие в один прием (как говорят химики, в одну стадию), называются элементарными реакциями. Таких реакций немного. Большинство реакций (даже таких с виду таких простых как H 2 + I 2 ® 2HI) не являются элементарными, поэтому исходя из стехиометрического уравнения такой реакции записать его кинетическое уравнение нельзя.

Кинетическое уравнение можно получить двумя способами: экспериментально – измеряя зависимость скорости реакции от концентрации каждого реагента по отдельности, и теоретически – если известен детальный механизм реакции. Чаще всего (но не всегда) кинетическое уравнение имеет вид

v = k [A] x [B] y , где x и y называются порядками реакции по реагентам А и В. Эти порядки, в общем случае, могут быть целыми и дробными, положительными и даже отрицательными. Например, кинетическое уравнение для реакции термического распада ацетальдегида CH 3 CHO ® CH 4 + CO имеет вид v = k 1,5 , т.е. реакция имеет полуторный порядок. Иногда возможно случайное совпадение стехиометрических коэффициентов и порядков реакции. Так, эксперимент показывает, что реакция H 2 + I 2 ® 2HI имеет первый порядок как по водороду, так и по иоду, то есть ее кинетическое уравнение имеет вид v = k (именно поэтому эту реакцию в течение многих десятилетий считали элементарной, пока в 1967 не был доказан ее более сложный механизм).

Если известно кинетическое уравнение, т.е. известно, как скорость реакции зависит от концентраций реагентов в каждый момент времени, и известна константа скорости, то можно рассчитать зависимость от времени концентраций реагентов и продуктов реакции, т.е. теоретически получить все кинетические кривые. Для таких расчетов используются методы высшей математики или компьютерные расчеты, и они не представляют принципиальных трудностей.

С другой стороны, полученное экспериментально кинетическое уравнение помогает судить о механизме реакции, т.е. о совокупности простых (элементарных) реакций. Выяснение механизмов реакций является важнейшей задачей химической кинетики. Это очень трудная задача, так как механизм даже простой с виду реакции может включать множество элементарных стадий.

Можно проиллюстрировать применение кинетических методов для определения механизма реакции на примере щелочного гидролиза алкилгалогенидов с образованием спиртов: RX +

OH – ® ROH + X – . Экспериментально было обнаружено, что для R = CH 3 , C 2 H 5 и т.д. и X = Cl скорость реакции прямо пропорционально концентрациям реагентов, т.е. имеет первый порядок по галогениду RX и первый – по щелочи, и кинетическое уравнение имеет вид v = k 1 . В случае третичных алкилиодидов (R = (CH 3) 3 C, X = I) порядок по RX – первый, а по щелочи – нулевой: v = k 2 . В промежуточных случаях, например, для изопропилбромида (R = (CH 3) 2 CH, X = Br), реакция описывается более сложным кинетическим уравнением: v = k 1 + k 2 . На основании этих кинетических данных был сделан следующий вывод о механизмах подобных реакций.

В первом случае реакция идет в один прием, путем непосредственного столкновения молекул спирта с ионами ОН

– (так называемый механизм SN 2 ). Во втором случае реакция идет в две стадии. Первая стадия – медленная диссоциация алкилиодида на два иона: R I ® R + + I – . Вторая – очень быстрая реакция между ионами: R + + OH – ® ROH. Скорость суммарной реакции зависит только от медленной (лимитирующей) стадии, поэтому она не зависит от концентрации щелочи; отсюда – нулевой порядок по щелочи (механизм SN 1 ). В случае вторичных алкилбромидов осуществляются одновременно оба механизма, поэтому кинетическое уравнение более сложное.

Илья Леенсон

ЛИТЕРАТУРА История учения о химическом процессе . М., Наука, 1981
Леенсон И.А. Химические реакции . М., АСТ – Астрель, 2002