Описание принципиальной технологической схемы дожимной насосной станции (ДНС). Описание принципиальной технологической схемы установки предварительного сброса воды (упсв) Дожимные насосные станции

Станции используются при обустройстве нефтяных современных скважин наряду с системами сбора и подготовки месторождений, замерными установками, системой откачки и центральным пунктом сбора, подготовки нефтепродуктов и материалов, отсоединенных от них. Между собой все элементы агрегируют посредством трубопроводов. По ним извлекаемая жидкость перемещается на выкидную линию, диаметр которой составляет от 73 до 114 мм. Затем сырье транспортируется по коллекторам с увеличенным диаметром.

Предназначение

Станции (ДНС) используются на скважинах, которые не имеют достаточной пластовой энергии для доставки нефтегазовой субстанции до устройств предварительного сброса воды (УПСВ) или пункта перекачки нефтепродуктов. Как правило, рассматриваемые агрегаты применяются на отдельно размещенных месторождениях.

Основное предназначение дожимных насосных станций - сепарация газа от нефти, очистка сырья от капельной жидкости, последующее перемещение нефтяной массы при помощи центробежных насосов, а газа - посредством давления в сепараторных отсеках. ДНС является первой ступенью сепарации, отводит газ в отдельный коллектор. Также предусмотрен сброс воды с последующей ее закачкой в скважины поглощающего либо нагнетательного типа.

Технологические особенности

На практике используется три типовых размера дожимных насосных станций. Среди них - модели 7000, 14000 и 20000. Цифровое обозначение указывает на подачу жидкости агрегатом (м/с). Технологические процедуры состоят из таких операций:

  • Первой стадии сепарации нефтепродуктов.
  • Предварительного сброса воды, если требуется.
  • Нагрева содержимого скважины.
  • Перемещения нефтегазовой смеси на ЦПС.
  • Транспортировки отделенного от нефти газа при первой ступени очистки на ГПЗ и прочие приемные пункты.
  • Усредненного учета нефти, газа и воды.
  • Загрузки химических реагентов.

Ниже представлено оборудование дожимных насосных станций:

  • Буферный резервуар.
  • Отсек для сбора и откачки
  • Насос с электрическим мотором.
  • Аппаратура и КИП.
  • Распределительное приспособление.
  • Свечи экстренного сброса газа.

Принцип работы

Нефть от газа отделяется в обособленных отсеках ДНС, представляющих собой агрегаты сепараторного действия. В них выполняется не только отсортировка газа, но и отстаивание сырой нефти от механических примесей и промысловой воды. По сути, данные агрегаты являются отстойниками. Они бывают двух типов: горизонтального и вертикального исполнения.

Дожимная насосная станция, фото которой представлено ниже, оборудуется горизонтальной буферной емкостью на 100 куб. м. и насосной помпой типа 8НД-9Х3 с электромотором А-114-2М. В 700-й версии используется один насосный и один буферный узел, а в модификации 20000 - дополнительные аналоги, наряду с указанными агрегатами. Также на каждой станции предусмотрены резервные насосные системы.

Конструкция буферной емкости на дожимной насосной станции

Для буферных резервуаров применяются горизонтальные емкости сепараторного типа. Их объем составляет 100 кубических метров, а рабочее давление - 0,7 МПа. Создание равномерного зеркала помещенной жидкости обеспечивается поперечными перегородками решетчатого типа. Газ из этих емкостей транспортируется в специальный сборочный коллектор.

Также в системе может использоваться вертикальный сепаратор. Он представляет собой емкость, внутри которой нефтегазовая смесь под давлением подается по патрубку в коллектор раздачи. Далее нефтепродукты проходят через регулятор давления, попадая в атмосферу со стабильной одинаковой нагрузкой. За счет понижения давления из поступившей смеси выделяется газ. Так как данный процесс требует времени, наклонные полки в конструкции агрегата обеспечивают подачу очищенного раствора в нижнюю часть сепаратора.

Извлеченный газ поднимается вверх, после чего транспортируется в капельный уловитель, который отделяет частички нефти и перемещает газ в газопровод. Снимаемая нефть поступает в специальный поддон. Контроль процесса осуществляется при помощи регулятора, стеклянного обозревателя и отвода шлама.

Конструкционные схемы

Одна из технологических блочных дожимных насосных станций предусматривает оснащение центробежными насосами. Так как в пластах имеется значительное количество газа, его подача на помпу может превысить критическое значение, составляющее от 10 до 15 процентов. Чтобы обеспечить нормальную работу агрегатов, используется предварительная сепарация пластов и продукции, которая в них содержится. Такой подход позволяет понизить содержание газа и удалить более 70 процентов промысловой воды. Для насосного оборудования этой конструкции применяются плунжерные, мультифазные и центробежные насосные приспособления.

Во втором варианте рабочей схемы ДНС предусмотрена установка исключительно насосов с несколькими фазами. При этом пластовое сырье направляется в ЦППН. Затем система исключает необходимость сепарации попутных газовых потоков. Причем это происходит непосредственно на территории разрабатываемого месторождения. Мультифазные помпы дают возможность значительно снизить давление на входном коллекторе ДНС. Тем не менее такие агрегаты испытывают критичную нагрузку при превышении содержания механических примесей, что требует установки дополнительных фильтрующих элементов.

Центробежные насосы

Подобные агрегаты предназначены для перекачивания насыщенной водой и газом нефтяной массы. Они оптимально функционируют при рабочей температуре подаваемой смеси порядка 45 градусов по Цельсию и плотности до 1000 кг/куб.м.

Кинематическая вязкость обрабатываемой массы составляет не более 8,5 части по водородному параметру. Содержание газа фиксируется в пределах 3-х процентов. Аналогичный показатель уровня парафина не должен превышать 20 процентов с учетом прочих механических примесей. Автоматизация дожимной насосной станции позволяет комплектовать агрегат дающим возможность снизить общие утечки до 100 миллилитров в час.

Устройство насоса

Основная рабочая часть ДНС состоит из корпуса с крышками линий нагнетания и всасывания. Кроме того, в конструкцию входят передние и задние кронштейны, направляющие системы, фиксирующие болтовые элементы.

Направляющая секция агрегирует с уплотняющими кольцами и образует единый блок насоса. Корпусные стыки направляющих устройств имеют рабочее колесо. Эти детали образуют основной отсек насоса. Корпусные соединения имеют уплотнители из резины, устойчивой к воздействию нефтепродуктов. Такая конструкция позволяет изменять силу напора подачи рабочей смеси, в зависимости от особенностей разрабатываемой скважины, а также числа рабочих колес и направляющих устройств. При эксплуатации агрегата меняется только длина стяжных шпилек и вала.

Опорные кронштейны насосного механизма изготовлены из чугуна. Это дает возможность усилить устойчивость и надежность агрегата. В систему также входят сальники из специального прессованного материала и детали их сплава хром и никеля.

В заключение

Дожимная насосная станция, типоразмеры и характеристики которой рассмотрены выше, имеет конкретное предназначение. Она служит для сепарации и транспортировки к принимающим и перерабатывающим приспособлениям нефтегазовой смеси. При этом осуществляется сбор и подготовка компонентов из воды, газа и нефти.

Автоматизированные блочные дожимные насосные станции также участвуют в сепарации газа и очистке смеси от капельной жидкости. Нефть перекачивается специальным насосом, а газ транспортируется под возникающим в процессе сепарации давлением. На промысловых предприятиях нефтепродукты проходят через буферные емкости, поступая к перекачивающей помпе и нефтепроводу. По большому счету ДНС - это насосная станция полного цикла, позволяющая учесть подачу, обработку и количество используемых при добыче компонентов нефтяных продуктов.

Введение

Технологические процессы сбора и подготовки углеводородного сырья заключается в последовательном изменении состояния продукции нефтяной скважины и отдельных ее составляющих (нефть и газ), завершающимся получением товарной продукции. Технологический процесс после разделения продукции скважины состоит из нефтяного и газового материальных потоков.

Основными технологическими установками входящими в состав системы сбора и подготовки являются:

дожимная насосная станция (ДНС);

дожимная насосная станция с установкой предварительного сброса воды (ДНС с УПСВ);

установка предварительного сброса воды (УПСВ);

установка подготовки нефти (УПН), которая входит в состав ЦПС.

Целью курсового проекта является расчет материальных балансов технологической установки УПСВ.

Описание принципиальной технологической схемы установки предварительного сброса воды (УПСВ)

Общее сведения

Установка предварительного сброса воды УПСВ

Назначение

Внутри аппарата расположены: устройство ввода, успокоительная перегородка, секция коалесценции, струнный каплеотводник для очистки газа и секция сбора нефти.

Схема установки УПСВ

материальный баланс предварительный сброс вода

НГС Нефтегазосепаратор

ГС Газовый сепаратор

ГСВ Газовый сепаратор вертикального типа

РВС Резервуар вертикальный стальной

УСТН Установка сепарационная трубная наклонная

РК Расширительная камера

С выкидной линии насосов нефть через фильтры поступает на узел учета нефти. Для учета откачиваемой жидкости узел учета нефти оборудуется счетчиками " Норд". Датчики показаний "Норд” выведены на щит КИПиА. После узла учета нефть по напорному нефтепроводу поступает на ЦППН.

Установки предварительного сброса воды предназначены для дегазации нефти, отбора и очистки попутного газа, сброса пластовой воды под избыточным давлением.

Конструкция установок выполнена на базе отработанной конструкции нефтегазовых сепараторов со сбросом воды НГСВ. Установки представляют собой горизонтальные аппараты, снабженные технологическими штуцерами и штуцерами для КИПиА.

Внутри аппарата расположены: устройство ввода, успокоительная перегородка, секция коалесценции, струнный каплеотбойникдля очистки газа и секция сбора нефти.

Для улучшения разделения нефтегазовой смеси на входе НГСВ устанавливается депульсатор, обеспечивающий отвод, минуя аппарат, основного количества выделившегося газа, а также послойный ввод водонефтяной эмульсии и сбросной воды раздельными потоками в соответствии с их плотностью в среднюю и нижнюю отстойные зоны аппарата.

Технические характеристики

Параметры:

Производительность по жидкости, т/сут, не более

Давление рабочее, МПа (кг/см 2)

0,6 (6,0); 1,0 (10,0); 1,6 (16,0)

Способ нагрева эмульсии

Без подогрева (для легких нефтей) Со встроенным нагревателем (для средних нефтей) С автономным нагревателем (для тяжелых нефтей)

Обводненность нефтяной эмульсии на входе, % мас., не более

Обводненность нефтяной эмульсии на выходе, % мас., в пределах

3-5 (для легких нефтей плотностью до 850 кг/м 3 , с ориентир. временем пребывания в аппарате до 20 мин.) 5-8 (для средних нефтей плотностью от 850-870 кг/м 3 , с ориентир. временем пребывания в аппарате до 37 мин.) до 12 (для тяжелых нефтей плотностью от 870-895 кг/м 3 , с ориентир. временем пребывания в аппарате до 60 мин.)

В соответствии с требованиями закзчика

Объем аппарата м 3

Производительность по жидкости указана для легкой нефти, для остальных типов уменьшается в зависимости от времени пребывания жидкости в аппарате.

Работа УПСВ

Газ из депульсатора подается в аппарат через штуцер ввода газа, проходит успокоительную перегородку, секцию коалесценции, где происходит дополнительное отделение капельной жидкости. Окончательная очистка газа производится струнным каплеотбойником.

Вода с незначительным содержанием нефти подается из депульсатора в нижнюю часть аппарата через штуцер входа воды. В нижней части аппарата вода окончательно отделяется от нефти, накапливается до перегородки секции сбора нефти и отводится через штуцер выхода воды.

Нефть с незначительным содержанием газа и воды подается в вводное устройство, где плавно распределяется по верхнему уровню жидкой фазы, не перемешивая поток с водой, проходит через успокоительную перегородку, секцию коалесценции, где происходит окончательное отделение остатков газа и воды, поступает в секцию сбора нефти и оттуда выводится из аппарата.

В зависимости от свойств нефтеводогазовой смеси допускается поставка установки УПСВ без депульсатора.

Для регионов Западной Сибири совместно с институтом СибНИИНП была специально разработана установка предварительного сброса воды (УПСВ).

Технологическая схема УПСВ разработана на основе технологического оборудования "УПСВ-200" производства ПГ "Генерация", конструкция которого дорабатывается согласно требованиям заказчика.

Кроме основного аппарата в составе УПСВ используется вспомогательное оборудование:

реагентный блок с дозировочными насосами производительностью до 10 л/час,

трубопроводная обвязка,

запорная арматура,

средства контроля и управления,

система безопасности,

кабельная продукция и т.д.

Выбор контрольно-измерительных приборов и средств автоматики производиться специалистами КИПиА ПГ "Генерация" и согласовывается с заказчиком.

Описание технологии и оборудования УПСВ для регионов Западной Сибири

Предлагаемая установка предварительного сброса воды (УПСВ) разработана на основании исходных материалов, полученных от предполагаемого заказчика. Она предполагает использование оборудования, выпускаемого ПГ "Генерация", а также существующего технологического оборудования имеющегося в распоряжении заказчика.

В основу технологии УПСВ положены технические решения, разработанные СибНИИНП для организации предварительного сброса воды в системах сбора на месторождениях Западной Сибири в газонасыщенном состоянии при естественной температуре поступающего сырья. По представленной информации естественная температура поступающего на УПСВ сырья в течение года изменяется от +24 до +27°С. Такая температура с использованием де-эмульгатора достаточна для предварительного разделения эмульсии, образуемой нефтью. Учитывая что с ростом обводненности температура поступающего на УПСВ сырья будет расти, применение в составе УПСВ нагревателей нецелесообразно. Это повышает безопасность и надежность УПСВ, упрощает обслуживание, снижает затраты. Кроме того, снимается проблема солеотложений, возникающая при нагревании высокообводненных эмульсий.

Водная фаза содержит солеобразующие ионы (кальция, бикарбоната), что характерно для попутно добываемых вод Западно-Сибирского региона.

Эффективность работы установок УПСВ во многом зависит от свойств поступающей водонефтяной смеси, главным образом, от ее устойчивости.

Осуществление предварительного сброса воды возможно производить на ДНС и ЦПС. Обработка нефти на ЦПС зачастую осуществляется после полного разгазирования, имеет ряд преимуществ.

Существуют два различных варианта осуществления процесса сброса воды на ДНС в газонасыщенном состоянии:

· первый вариант, когда разделение газовой, нефтяной и водной фаз производится в одном аппарате (трехфазном сепараторе). Данный вариант применяется в том случае, если не предъявляются повышенные требования к качеству выходящих с установки воды, нефти и газа, а также при небольшой (до 10 тыс. м 2 /сут.) производительности УПСВ;

· во втором варианте разделение фаз осуществляется последовательно в разных аппаратах. Сначала в нефтегазовом сепараторе от жидкости отделяется свободный газ, затем жидкость направляется в аппарат - водоотделитель (отстойник), где происходит ее разделение на нефтяную и водную фазы. Данный вариант позволяет обеспечить получение нефти, содержащей до 5% воды, и воды,

В качестве водоотделителя (отстойника) предлагается использовать аппараты УПСВ объемом 200 м 2 , конструкция которых предусматривает разделение жидкостей за счет разностей плотностей и интенсификации процесса при использовании коалесцирующих элементов, выполненных в виде пакетов и пластин из нержавеющей стали (рис. 1).

Уровень раздела фаз "нефть-вода" в УПСВ поддерживается на необходимой высоте при помощи регулятора уровня и клапана, установленного на линии выхода воды из аппарата.

Давление в УПСВ поддерживается при помощи клапана, установленного на линии вывода нефти.

Обезвоженная нефть из отстойников водоотделителей (УПСВ) подается на насосы внешней откачки или в имеющиеся резервуары.

С целью повышения эффективности работы УПСВ предлагается применение специальной технологии дозирования деэмульгаторов, предусматривающей обработку сырой нефти, содержание воды в которой превышает 60 %, т.е. являющейся, по сути, эмульсией типа "нефть в воде".

Сущность технологии дозирования деэмульгаторов в высоко обводненную нефть, представляющей собой эмульсию типа "нефть в воде", состоит в следующем:

после выкида насоса внешней откачки ДНС до узла учета отбирается часть нефти, которая по самостоятельному трубопроводу возвращается в поток газожидкостной смеси перед УПОГ;

в этот трубопровод при помощи дозирующего насоса блока реагентного хозяйства (БРХ) подается реагент - деэмульгатор в товарной форме;

Такой способ введения деэмульгатора в высоко обводненную нефть по сравнению с подачей его в товарной форме, т.е. в концентрированном виде, позволяет избежать прямого попадания деэмульгатора в водную фазу, когда он не доходит до эмульсии, а сбрасывается с водой из отстойника, не выполняя своих функций, что приводит к перерасходу реагента и ухудшению качества нефти и воды.


При реализации данной технологии следует придерживаться рекомендаций РД 29-0148070-225-88Р "Технология подготовки нефти с применением отечественных деэмульгаторов для месторождений Западной Сибири".

Прежде всего, диаметр трубопровода, по которому транспортируется нефтереагентная смесь от БРХ к точке подачи перед УПОГ, должен быть выбран таким, чтобы скорость движения жидкости в нем была более 1,5 м/сек., а концентрация получаемого при этом раствора реагента 0,2-0,5%.

При производительности УПСВ 10-15 тыс. м 2 /сут. может быть использована труба для нефтереагентопровода с внутренним диаметром ~25 мм.

Преимущество вышеуказанной технологии дозирования деэмульгатора заключаются в том, что подача в виде разбавленного раствора по сравнению с вводом в концентрированном виде позволяет обеспечивать быстрое распределение его в объеме эмульсии и срабатывание.

Попутно добываемая вода, отделяющаяся на УПСВ, кроме растворенных солей содержит растворенный газ в количестве около 90 л/м 2 . Состоит этот газ преимущественно из углеводородных компонентов (метана). В этой связи в соответствии с п.2.48. ВНТП 2-85 "Нормы технологического проектирования объектов сбора, транспорта, подготовки нефти, газа и воды нефтяных месторождений" такая вода не может подаваться на насосы БКНС без предварительного разгазирования. Для этих целей на БКНС необходима установка "буфер дегазатора".

Таким образом, предлагаемая технологическая схема УПСВ имеет следующие преимущества :

· использование существующего технологического и вспомогательного оборудования позволяет снизить затраты на оборудование и строительство;

· осуществление процесса при естественной температуре поступающего сырья без использования в технологии нагревателей повышает безопасность и надежность установки УПСВ, упрощает ее обслуживание, снижает стоимость, уменьшает проблемы солеотложения;

· разделение нефти и воды в газонасыщенном состоянии при давлении первой ступени сепарации за счет присутствия в нефти растворенного газа снижает ее плотность и вязкость, позволяет повысить скорость расслоения фаз, качество получаемых нефти и воды;

· организация разделения газожидкостной смеси поэтапно (вначале отделяется газ в сепараторах первой ступени или на УПОГ, затем в отстойниках разделяются нефть и вода) позволяет получить на каждом этапе более полное и качественное разделение фаз - газа, нефти и воды;

· применение специальной технологии дозирования деэмульгатора на вход в установку УПСВ в виде раствора реагента в нефти обеспечивает быстрое и наиболее полное использование реагента, исключает непосредственное его попадание в водную фазу, где деэмульгатор не может проявлять свою деэмульгирующую активность. Это особенно важно в данном случае при обработке высокообводненных нефтей, когда необходимо разделить эмульсию с содержанием воды 60% и более, т.е. эмульсию типа "нефть в воде";

· отсутствие в технологической схеме УПСВ насосов и участков с большими перепадами давления исключает передиспергирование обрабатываемой эмульсии, обеспечивая таким образом быстрое и полное разделение фаз;

· применение в отстойниках специальных секций коалесценции частиц дисперсной фазы, выполненных в виде пакетов пластин из нержавеющей стали, также способствует повышению качества разделения нефти и воды;

· система контроля и управления УПСВ обеспечивает автоматический контроль и поддержание заданного режима работы оборудования, предупредительную и аварийную сигнализацию, противоаварийную защиту установки, автоматическое ведение журнала событий.

Технические характеристики

Производительность: м 3 /сут (м 3 /ч)

10000 - 15000 (416,6 - 625)

Время пребывания жидкости в аппарате, мин

Скорость горизонтального движения жидкости в секции коалесценции, м/с

Время осаждения капель воды в нефтяном слое секции коалесценции в расчетном зазоре между листами, диаметром

d 200 мк - 2,45 мин.

d 150 мк - 4,35 мин.

d 100 мк - 9,87 мин.

В нефтяном слое осядут капли воды диаметром

d 200 мк и более - 100 % d 50 мк - 46 %

Время всплытия капель нефти в водяном слое секции коалесценции в расчетном зазоре между листами, диаметром:

d 100 мк - 1,1 мин.

d 50 мк - 4,3 мин.

d 25 мк - 17,5 мин.

В водяном слое всплывут капли нефти диаметром

d 25 мк и более - 100 % d 10 мк - 17 %

Масса УПСВ - 1 шт. /2200 м 3

Подняли из скважины на поверхность, она попадает в систему сбора и подготовки продукции. Вся эта система представляет собой довольно сложный комплекс нефтепромыслового оборудования, состоящий из трубопроводов, запорно-регулирующей аппаратуры, замерных установок, сепараторов, резервуаров. Формируется система сбора и подготовки нефти в соответствии с Проектом обустройства месторождения, который разрабатывается специализированной проектной организацией (проектным институтом).

Продукция нефтяных скважин практически никогда не состоит из чистой нефти. Как правило, она представляет собой смесь нефти, воды и газа с небольшими примесями других веществ. Поэтому важнейшей задачей системы сбора и подготовки нефти является сепарация, то есть разделение нефти, газа и воды друг от друга.

Рисунок 1. Принципиальная схема сбора и подготовки нефти

Сепарация, как правило, происходит в несколько стадий. На каждой стадии могут использоваться различные типы сепараторов. По принципу действия сепараторы делятся на центробежные и гравитационные, по конструкции – на горизонтальные, вертикальные, сферические. Для более эффективного отделения воды от нефти и предупреждения образования трудноразрушаемой эмульсии в продукцию скважин добавляют различные реагенты-деэмульгаторы. Также на определенных стадиях производят нагрев нефти для ускорения процессов разделения воды от нефти.

Трубопроводы, применяемые на нефтепромыслах обычно подразделяются на:

  • Нефтепроводы;
  • Газопроводы;
  • Нефтегазопроводы;
  • Водопроводы (водоводы).

Трубопроводы, ведущие от устья скважин до групповых замерных установок, называют выкидными линиями . А от групповых установок к сборным пунктам – коллекторами .

На первой стадии сбора и подготовки скважинная жидкость по выкидной линии попадает на групповую замерную установку (ГЗУ) , где определяется количество добываемой из скважин жидкости и производится частичное отделение попутного газа и воды от нефти. Далее нефть посредством дожимной насосной станции (ДНС) через сборные коллекторы направляется на центральный пункт сбора (ЦПС) .

«Пункт сбора» - понятие довольно приблизительное. Это может быть что угодно: от очень простой станции сбора до сложного центра комплексной подготовки, где добытые флюиды проходят подготовку и разделяются на газ, газоконденсатные жидкости, воду и стабилизированную нефть.

Обычно на одном нефтяном месторождении устраивают один ЦПС. Но иногда целесообразно один ЦПС использовать для нескольких месторождений с размещением его на более крупном из них. В этом случае на отдельных месторождениях могут сооружаться комплексные сборные пункты (КСП), где жидкость, добытая из скважин, проходит частичную сепарацию и обработку.

Основное назначение дожимной насосной станции - обеспечить дополнительный напор для перекачки нефти на ЦПС с отдаленных месторождений. Часто ДНС объединяют с установкой предварительного сброса воды (УПСВ) , на которой производится частичная сепарация нефти, газа, воды и дальнейшая перекачка их раздельными трубопроводами.

Окончательная подготовка нефти проводится на установке комплексной подготовки нефти (УКПН), являющейся составной частью понятия ЦПС. Процесс окончательной подготовки нефти включает:

  • Дегазацию (окончательное отделение газа от нефти)
  • Обезвоживание (разрушение водонефтяной эмульсии, образующейся при подъеме продукции из скважины и транспорте ее до УКПН)
  • Обессоливание (удаление солей за счет добавления пресной воды и повторного обезвоживания)
  • Стабилизацию (удаление легких фракций с целью уменьшения потерь нефти при ее дальнейшей транспортировке)

Подготовленная (товарная) нефть направляется в товарный парк, включающий резервуары различной вместимости: от 1000 м³ до 50000 м³. Далее нефть через головную насосную станцию подается в магистральный нефтепровод. Замер объема сдаваемой на транспортировку нефти производится на Узле учета, оборудованном в соответствии с техническими условиями (ТУ) АК «Транснефть».

АБР — аэрированный буровой раствор.

АВПД — аномально высокое пластовое давление.

АНПД — аномально низкое пластовое давление.

АКЦ — акустический цементомер.

АТЦ — автотранспортный цех.

БГС — быстрогустеющая смесь.

БКЗ — боковое каротажное зондирование.

БКПС — блочные кустовые насосные станции.

БСВ — буровые сточные воды.

БПО — база производственного обслуживания. Вспомогательные обслуживающие цеха (ремонт и т.д.)

БУ — буровая установка.

ВГК — водогазовый контакт.

ВЗБТ — Волгоградский завод буровой техники.

ВЗД — винтовой забойный двигатель.

ВКР — высококальциевый раствор.

ВКГ — внутренний контур газоносности.

ВНКГ — внешний контур газоносности.

ВКН — внутренний контур нефтеносности.

ВНКН — внешний контур нефтеносности.

ВМЦ — вышкомонтажный цех.

ВНК — водонефтяной контакт.

ВПВ — влияние пневмовзрыва.

ВПЖ — вязкопластичная (бингамовская) жидкость.

ВРП — водораспределительный пункт.

ГГК — гамма-гамма-каротаж.

ГГРП — глубиннопроникающий гидравлический разрыв пласта.

ГДИ — гидродинамические исследования. Исследование состояния скважины.

ГЖС — газожидкостная смесь.

ГИВ — гидравлический индикатор веса.

ГИС — геофизическое исследование скважин.

ГЗНУ — групповая замерная насосная установка. Тоже, что и ГЗУ+ДНС. Сейчас от этого отходят, сохранились только старые.

ГЗУ — групповая замерная установка. Замер дебита жидкости, поступающей с усов.

ГК — гамма-каротаж.

ГКО — глинокислотная обработка.

ГНО — глубинное насосное оборудование. Оборудование, погруженное в скважину (насос, штанги, НКТ).

ГНС — головная нефтепрекачивающая станция.

ГПП — гидропескоструйная перфорация.

ГПЖ — газопромывочная жидкость.

ГПЗ — газоперерабатывающий завод.

ГПС — головная перекачивающая станция.

ГРП — гидравлический разрыв пласта.

ГСМ — горюче-смазочные материалы.

ГСП — групповой сборный пункт.

ГТМ — геолого-технические мероприятия. Мероприятия по увеличению производительности скважин.

ГТН — геолого-технологический наряд.

ГТУ — геолого-технологические условия.

ГЭР — гидрофобно-эмульсионный раствор.

ДНС — дожимная насосная станция. Поступление нефти со скважин через ГЗУ по усам на ДНС для дожимки в товарный парк. Может быть только дожим насосами жидкости или с частичной обработкой (сепарация воды и нефти).

ДУ — допустимый уровень.

ЕСГ — единая система газоснабжения.

ЖБР — железобетонный резервуар.

ЗСО — зона санитарной охраны.

ЗЦН — забойный центробежный насос.

КВД — кривая восстановления давления. Характеристика при выводе скважины на режим. Изменение давления в затрубном пространстве во времени.

КВУ — кривая восстановления уровня. Характеристика при выводе скважины на режим. Изменение уровня в затрубном пространстве во времени.

КИН — коэффициент извлечения нефти.

КИП — контрольно-измерительные приборы.

КМЦ — карбоксиметилцеллюлоза.

КНС — кустовая насосная станция.

К — капитальный ремонт.

КО — кислотная обработка.

КРБК — кабель резиновый бронированный круглый.

КРС — . Ремонт после «полетов оборудования», нарушениях обсадной колонны, стоит на порядок дороже ПРС.

КССБ — конденсированная сульфит-спиртовая барда.

КССК — комплекс снарядов со съемным керноприемником.

ЛБТ — легкосплавные бурильные трубы.

ЛБТМ — легкосплавные бурильные трубы муфтового соединения.

ЛБТН — легкосплавные бурильные трубы ниппельного соединения.

МГР — малоглинистые растворы.

ММЦ — модифицированная метилцеллюлоза.

МНП — магистральный нефтепровод.

МНПП — магистральный нефтепродуктопровод.

МРП — межремонтный период.

МРС — механизм расстановки свечей.

МУН — метод увеличения нефтеизвлечения.

НБ — насос буровой.

НБТ — насос буровой трехпоршневой.

НГДУ — нефтегазодобывающее управление.

НГК — нейтронный гамма-каротаж.

НКТ — насосно-компрессорные трубы. Трубы, по которым на добывающих скважинах выкачивается нефть, на нагнетательных — закачивается вода.

НПП — нефтепродуктопровод.

НПС — нефтеперекачивающая станция.

ОА — очистительные агенты.

ОБР — обработанный буровой раствор.

ОГМ — отдел главного механика.

ОГЭ — отдел главного энергетика.

ООС — охрана окружающей среды.

ОЗЦ — ожидание затвердения цемента.

ОТ — обработка призабойной зоны.

ОТБ — отдел техники безопасности.

ОПРС — ожидание подземного ремонта скважины. Состояние скважины, в которое она переводится с момента обнаружения неисправности и остановки до начала ремонт. Скважины из ОПРС в ПРС выбираются по приоритетам (обычно — дебит скважины).

ОПС — отстойник предварительного сброса.

ОРЗ(Э) — оборудование для раздельной закачки (эксплуатации).

ОТРС — ожидание текущего ремонта скважины.

ПАВ — поверхностно-активное вещество.

ПАА — полиакриламид.

ПАВ — поверхностно-активные вещества.

ПБР — полимер-бентонитовые растворы.

ПДВ — предельно-допустимый выброс.

ПДК — предельно-допустимая концентрация.

ПДС — предельно-допустимый сброс.

ПЖ — промывочная жидкость.

ПЗП — призабойная зона пласта.

ПНП — повышение нефтеотдачи пластов.

ПНС — промежуточная нефтепрекачивающая станция.

ППЖ — псевдопластичная (степенная) жидкость.

ППР — планово-предупредительные работы. Работы по профилактике неисправностей на скважинах.

ППС — промежуточная перекачивающая станция.

ППУ — паропередвижная установка.

ПРИ — породоразрушающий инструмент.

ПРС — подземный ремонт скважины. Ремонт подземного оборудования скважины при обнаружении неисправностей.

ПРЦБО — прокатно-ремонтный цех бурового оборудования.

ПСД — проектно-сметная документация.

РВС — вертикальный стальной цилиндрический резервуар.

РВСП — вертикальный стальной цилиндрический резервуар с понтоном.

РВСПК — вертикальный стальной цилиндрический резервуар с плавающей крышей.

РИР — ремонтно-изоляционные работы.

РИТС — ремонтная инженерно-техническая служба.

РНПП — разветвленный нефтепродуктопровод.

РПДЭ — регулятор подачи долота электрический.

РТБ — реактивно-турбинное бурение.

РЦ — ремонтный цикл.

СБТ — стальные бурильные трубы.

СБТН — стальные бурильные трубы ниппельного соединения.

СГ — смесь гудронов.

СДО — соляро-дистиллятная обработка. Обработка скважин.

Система ТО и ПР — система технического обслуживания и планового ремонта бурового оборудования.

СКЖ — счетчик количества жидкости. Счетчики для замеров жидкости непосредственно на скважинах для контроля замеров на ГЗУ.

СНС — статическое напряжение сдвига.

СПГ — сжиженный природный газ.

СПО — спуско-подъемные операции.

ССБ — сульфит-спиртовая барда.

ССК — снаряд со съемным керноприемником.

Т — текущий ремонт.

ТБО — твердые бытовые отходы.

ТГХВ — термогазохимическое воздействие.

ТДШ — торпеда с детонирующим шнуром.

ТК — тампонажная композиция.

ТКО — торпеда кумулятивная осевого действия.

ТО — техническое обслуживание.

ТП — товарный парк. Место сбора и переработки нефти (тоже, что и УКПН) .

ТП — технологический процесс.

ТРС — текущий ремонт скважины.

ТЭП — технико-экономические показатели.

ЕЕДН — группа Техники и Технологии Добычи Нефти.

УБТ — утяжеленные бурильные трубы горячекатаные или фигурного сечения.

УБР — управление буровых работ.

УЗД — ультразвуковая дефектоскопия.

УКБ — установка колонкового бурения.

УКПН — установка комплексной подготовки нефти.

УСП — участковый сборный пункт.

УЦГ — утяжеленный тампонажный цемент.

УШЦ — утяжеленный шлаковый цемент.

УЩР — углещелочной реагент.

УПГ — установка подготовки газа.

УПНП — управление повышения нефтеотдачи пласта.

УПТО и КО — управление производственно-технического обеспечения и комплектации оборудования.

УТТ — управление технологического транспорта.

УШГН — установка штангового глубинного насоса.

УЭЦН — установка электроцентробежного насоса.

ХКР — хлоркальциевый раствор.

ЦА — цементировочный агрегат.

ЦДНГ — цех добычи нефти и газа. Промысел в рамках НГДУ.

ЦИТС — центральная инженерно-техническая служба.

ЦКПРС — цех капитального и подземного ремонта скважин. Цех в рамках НГДУ, выполняющий ПРС и КРС.

ЦКС — цех крепления скважин.

ЦНИПР — цех научно-исследовательских и производственных работ. Цех в рамках НГДУ.

ЦППД — цех поддержания пластового давления.

ЦС — циркуляционная система.

ЦСП — центральный сборный пункт.

ШГН — штанговый глубинный насос. С качалкой, для низкодебитных скважин.

ШПМ — шинно-пневматическая муфта.

ШПЦС — шлакопесчаный цемент совместного помола.

ЭГУ — электрогидравлический удар.

ЭРА — электрогидравлический ремонтный агрегат.

ЭХЗ — электрохимическая защита.

ЭЦН — электроцентробежный насос. Для высокодебитных скважин.

УСТАНОВКА ПРЕДВАРИТЕЛЬНОГО СБРОСА ВОДЫ.

Установки предварительного сброса пластовой воды, технологическая схема. Дожимные насосные станции. Состав дожимных насосных станций.

Установка предварительного сброса воды УПСВ (рис.1) предназначена для отделения от нефти воды и попутного газа. УПСВ состоит из следующих комплексов оборудования:

· Узел сепарации.

· Резервуарный парк.

· Насосный блок (УПСВ может быть оборудовано несколькими насосными блоками).

Узел сепарации может иметь несколько ступеней сепарации с применением различного типа оборудования (НГС, ГС, УБС, ОГ, РК, УСТН).

Резервуарный парк состоит из одного или нескольких резервуаров, вместимостью от нескольких сотен до десятков тысяч м3 жидкости. В основном употребляются вертикальные стальные резервуары РВС. Для предотвращения разлива жидкости из РВС они должны быть обвалованы.

Насосный блок может содержать как нефтяные, так и водяные насосы разных типов (плунжерные, центробежные, шестеренчатые и т.д.). Наибольшее распространение получили центробежные насосы типа ЦНС. При сравнительно небольших габаритах они обеспечивают высокую производительность и напор жидкости, а при необходимости параметры работы регулируются за счет уменьшения или увеличения рабочих колес.

Рассмотрим принцип работы УПСВ на стандартной схеме.

Продукция скважин нефть, газ и вода с кустовых замерных установок АГЗУ типа "Спутник" поступает на узел сепарации газа в нефтегазовый сепаратор НГС. На вход НГС подается демульгатор посредством дозировочного насоса, расположенного в блоке реагентного хозяйства БРХ. Расход химреагента производится согласно утвержденным нормам.

В НГС осуществляется сепарация нефти от газа. Затем отсепарированный газ с НГС поступает в газосепаратор ГС, а жидкость, через расширительную камеру РК поступает в УСТН для окончательного отделения от газа.

Уровень в НГС контролируется прибором РУПШ и регулируется с помощью регулировочного клапана УЭРВ, установленного на выходе с НГС. Управление УЭРВ осуществляется в ручном или автоматическом режиме с помощью блока управления, выведенного на щит КИПиА в операторной УПСВ.

Для предотвращения превышения давления в НГС, ГС, УСТН свыше допустимого они оборудованы предохранительными клапанами СППК.

В ГС происходит первичная осушка газа, после чего он проходит через установки окончательной осушки ГСВ и поступает потребителю или на ГКС. Для предотвращения замерзания газопроводов на выход из ГС дозировочным насосом подается метанол. Расход метанола производится согласно утвержденным нормам.

После УСТН отделенная от газа жидкость поступает в резервуар РВС, где происходит отделение нефти от подтоварной воды. Подтоварная вода под давлением столба жидкости с РВС поступает через узел учета воды в водонасосную или на БКНС. Уровень жидкости в РВС контролируется прибором ВК-1200 и регулируется УЭРВ. Блоки управления, световой и звуковой сигнализации УЭРВ и ВК-1200 выведены на щит КИПиА.

Нефть с РВС под давлением столба жидкости поступает на прием нефтяных насосов ЦНС. На приеме ЦНС установлены сетчатые фильтры, предотвращающие попадание в насосы различных мех. примесей.

Для контроля за работой насосов ЦНС они оборудуются следующими приборами:

· датчиками температуры подшипников;

· электроконтактными манометрами ЭКМ для контроля за давлением на приеме и выкиде насосов;

· приборами контроля за состоянием газо-воздушной смеси в помещении с включением принудительной вентиляции, звуковой и световой сигнализации на щите КИПиА в операторной УПСВ при превышении ПДК.

Показания всех приборов выводятся на щит КИПиА. Для удобства обслуживания УПСВ контроль за работой насосов можно осуществлять как в помещении нефтенасосной, так и в операторной УПСВ. Параметры работы насосов могут регулироваться как в ручном, так и в автоматическом режиме.

Для предотвращения движения жидкости через насосы в обратную сторону на выкиде насосов установлены обратные клапана КОП и задвижки с электроприводом. В случае отклонения параметров работы насосов от режимных происходит автоматическое отключение насосов, срабатывает звуковая и световая сигнализация, и электроприводные задвижки на выкиде закрываются.

Электродвигатели насосов также снабжены датчиками температуры подшипников.

НГС Нефтегазосепаратор

ГС Газовый сепаратор

ГСВ Газовый сепаратор вертикального типа

РВС Резервуар вертикальный стальной

УСТН Установка сепарационная трубная наклонная

РК Расширительная камера

С выкидной линии насосов нефть через фильтры поступает на узел учета нефти. Для учета откачиваемой жидкости узел учета нефти оборудуется счетчиками " Норд ". Датчики показаний “Норд” выведены на щит КИПиА. После узла учета нефть по напорному нефтепроводу поступает на ЦППН.

Характеристика реагентов

На УПСВ применяются следующие реагенты: ингибиторы коррозии, реагенты-деэмульгаторы. Для предотвращения образования гидратных пробок в сборный газопровод подается метанол. Ингибиторы коррозии, подаваемые в систему сбора нефти для защиты трубопроводов от коррозии, не должны ухудшать реологических свойств, как исходных эмульсий, так и эмульсий, обработанных деэмульгаторами, а также не должны отрицательно влиять на процесс подготовки нефти. То есть ингибиторы должны быть совместимы с применяемыми деэмульгаторами. На установке применяются ингибиторы коррозии типа “Коррексит” 1106А и 6350, “Сипакор”. Для улучшения процесса предварительного обезвоживания нефти применяются деэмульгаторы “Сепарол”WF - 41, “Сепарол” ES–3344, “Диссолван” 2830, 3408 и другие, аналогичные по характеристикам.